
Solving Structured Hierarchical Games Using Differential Backward Induction*

Zun Li1 Feiran Jia2 Aditya Mate3 Shahin Jabbari4 Mithun Chakraborty1 Milind Tambe3

Yevgeniy Vorobeychik5

1University of Michigan, Ann Arbor, {lizun,dcsmc}@umich.edu
2Pennsylvania State University, fzj5059@psu.edu

3Harvard University, {aditya_mate,milind_tambe}@g.harvard.edu
4Drexel University, shahin@drexel.edu

5Washington University in St. Louis, yvorobeychik@wustl.edu

Abstract

From large-scale organizations to decentralized
political systems, hierarchical strategic decision
making is commonplace. We introduce a novel
class of structured hierarchical games (SHGs) that
formally capture such hierarchical strategic inter-
actions. In an SHG, each player is a node in a tree,
and strategic choices of players are sequenced from
root to leaves, with root moving first, followed by
its children, then followed by their children, and
so on until the leaves. A player’s utility in an SHG
depends on its own decision, and on the choices of
its parent and all the tree leaves. SHGs thus gener-
alize simultaneous-move games, as well as Stack-
elberg games with many followers. We leverage
the structure of both the sequence of player moves
as well as payoff dependence to develop a gradient-
based back propagation-style algorithm, which we
call Differential Backward Induction (DBI), for
approximating equilibria of SHGs. We provide a
sufficient condition for convergence of DBI and
demonstrate its efficacy in finding approximate
equilibrium solutions to several SHG models of
hierarchical policy-making problems.

1 INTRODUCTION

The COVID-19 pandemic has revealed considerable strate-
gic tension among the many parties involved in decentral-
ized hierarchical policy-making. For example, recommen-
dations by the World Health Organization are sometimes
heeded, and other times discarded by nations, while subna-
tional units, such as provinces and urban areas, may in turn
take a policy stance (such as on lockdowns, mask mandates,
or vaccination priorities) that is not congruent with national

*The full technical version of this paper is available at https:
//arxiv.org/abs/2106.04663.

policies. Similarly, in the US, policy recommendations at
the federal level can be implemented in a variety of ways
by the states, while counties and cities, in turn, may com-
ply with state-level policies, or not, potentially triggering
litigation [15]. Central to all these cases is that, besides this
strategic drama, what ultimately determines infection spread
is how policies are implemented at the lowest level, such as
by cities and towns, or even individuals. Similar strategic
encounters routinely play out in large-scale organizations,
where actions throughout the management hierarchy are
ultimately reflected in the decisions made at the lowest level
(e.g., by the employees who are ultimately involved in pro-
duction), and these lowest-level decisions play a decisive
role in the organizational welfare.

We propose a novel model of hierarchical decision making
which is a natural stylized representation of strategic inter-
actions of this kind. Our model, which we term structured
hierarchical games (SHGs), represents each player by a
node in a tree hierarchy. The tree plays two roles in SHGs.
First, it captures the sequence of moves by the players: the
root (the lone member of level 1 of the hierarchy) makes
the first strategic choice, its children (i.e., all nodes in level
2) observe the root’s choice and follow, their children then
follow in turn, and so on, until we reach the leaf node play-
ers who move upon observing their predecessors’ choices.
Second, the tree partially captures strategic dependence: a
player’s utility depends on its own strategy, that of its parent,
and the strategies of all of the leaf nodes. The sequence of
moves in our model naturally captures the typical sequence
of decisions in hierarchical policy-making settings, as well
as in large organizations, while the utility structure captures
the decisive role of leaf nodes (e.g., individual compliance
with vaccination policies), as well as hierarchical depen-
dence (e.g., employee dependence on a manager’s approval
of their performance, or state dependence on federal fund-
ing). Significantly, the SHG model generalizes a number of
well-established models of strategic encounters, including
(a) simultaneous-move games (captured by a 2-level SHG
with the root having a single dummy action), (b) Stackelberg
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(leader-follower) games (a 2-level game with a single leaf
node) [11, 32], and (c) single-leader multi-follower Stackel-
berg games (e.g., a Stackelberg security game with a single
defender and many attackers) [5, 8].

Our second contribution is a gradient-based algorithm for ap-
proximately computing subgame-perfect equilibria of SHGs.
Specifically, we propose Differential Backward Induction
(DBI), which is a backpropagation-style gradient ascent al-
gorithm that leverages both the sequential structure of the
game, as well as the utility structure of the players. As DBI
involves simultaneous gradient updates of players in the
same level (particularly at the leaves), convergence is not
guaranteed in general (as is also the case for best-response
dynamics [12]). Viewing DBI as a dynamical system, we
provide a sufficient condition for its convergence to a sta-
ble point. Our results also imply that in the special case of
two-player zero-sum Stackelberg games, DBI converges to
a local Stackelberg equilibrium [11, 34].

Finally, we demonstrate the efficacy of DBI in finding ap-
proximate equilibrium solutions to several classes of SHGs.
First, we use a highly stylized class of SHGs with polyno-
mial utility functions to compare DBI with five baseline
gradient-based approaches from prior literature. Second, we
use DBI to solve a recently proposed game-theoretic model
of 3-level hierarchical epidemic policy making. Third, we
apply DBI to solve a hierarchical variant of a public goods
game, which naturally captures the decentralization of deci-
sion making in public good investment decisions, such as
investments in sustainable energy. Fourth, we evaluate DBI
in the context of a hierarchical security investment game,
where hierarchical decentralization (e.g., involving federal
government, industry sectors, and particular organizations)
can also play a crucial role. In all of these, we show that DBI
significantly outperforms the state of the art approaches that
can be applied to solve games with hierarchical structure.

Related Work SHGs generalize both simultaneous-move
games and Stackelberg games with multiple followers [5,
21]. They are also related to graphical games [19] in cap-
turing utility dependence structure, although SHGs also
capture sequential structure of decisions. Several prior ap-
proaches use gradient-based methods for solving games
with particular structure. A prominent example is generative
adversarial networks (GANs), though these are zero-sum
games [9, 14, 18, 26, 27, 28]. Ideas from learning GANs
have been adopted in gradient-based approaches to solve
multi-player general-sum games [4, 7, 16, 20, 23, 25, 26].
However, all of these approaches assume a simultaneous-
move game. A closely-related thread to our work considers
gradient-based methods for bi-level optimization [22, 31].
Several related efforts consider gradient-based learning in
Stackelberg games, and also use the implicit function theo-
rem to derive gradient updates [2, 11, 29, 33, 34]. We sig-
nificantly generalize these ideas by considering an arbitrary
hierarchical game structure.

Jia et al. [17] recently considered a stylized 3-level SHG
for pandemic policy making, and proposed several non-
gradient-based algorithms for this problem. We compare
with their approach in Section 4.

2 STRUCTURED HIERARCHICAL
GAMES

Notation We use bold lower-case letters to denote vectors.
Let f be a function of the form fpx,yq : Rd ˆ Rd1 Ñ Rd2 .
We use ∇xf to denote the partial derivative of f with respect
to x. When there is functional dependency between x and
y, we use Dxf to denote the total derivative of fpx,ypxqq
with respect to x. We use ∇2

x,xf and ∇2
x,yf to denote the

second-order partial derivatives and D2
x,xf to denote the

second-order total derivative of f . For a mapping f : Rd Ñ
Rd, we use f tpxq to denote t iterative applications of f
on x. For mappings f1 : Rd Ñ Rd and f2 : Rd Ñ Rd,
we define pf1 ˝ f2qpxq fi f1pf2pxqq and pf1 ` f2qpxq fi
f1pxq ` f2pxq. Moreover, for a given ε P Rą0 and x P Rd,
we define the ε-ball around x as Bεpxq “ tx1 P Rd |
}x´ x1}2 ă εu. Finally, I denotes an identity matrix.

Formal Model A structured hierarchical game (SHG) G
consists of the set N of n players. Each player i is as-
sociated with a set of actions Xi Ď Rdi . The players are
partitioned across L levels, where Nl is the set of nl players
occupying level l. Let li denote the level occupied by player
i. This hierarchical structure of the game is illustrated in
Figure 1 where players correspond to nodes and levels are
marked by dashed boundaries. The hierarchy plays two cru-
cial roles: 1) it determines the order of moves, and 2) it
partly determines utility dependence among players. Specif-
ically, the temporal pattern of actions is as follows: level 1
has a single player, the root, who chooses an action first, fol-
lowed by all players in level 2 making simultaneous choices,
followed in turn by players in level 3, and so on until the
leaves in the final level L. Players of level l only observe
the actions chosen by all players of levels 1, 2, ..., l ´ 1, but
not their peers in the same level. So, for example, pandemic
social distancing and vaccination policies in the US are ini-
tiated by the federal government (including the Centers for
Disease Control and Prevention who acts as the root in our
game model), with states (second level nodes) subsequently
instituting their own policies, counties (third level nodes)
reacting to these by determining their own, and behavior
of people (leaf nodes) ultimately influenced, but not deter-
mined, by the guidelines and enforcement policies by the
local county/city.

Next, we describe the utility structure of the game as entailed
by the SHG hierarchy. Each player i in level li ą 1 (i.e., any
node other than the root) has a unique parent in level li ´ 1;
we denote the parent of node i by PApiq. A player’s utility
function is determined by 1) its own action, 2) the action of



Figure 1: Schematic representation of an SHG. The utility
of player i can have direct functional dependence only on
the joint action of all shaded players.

its parent, and 3) the actions of all players in level L (i.e.,
all leaf players). To formalize, let xl denote the joint action
profile of all players in level l. Player i’s utility function
then has the form uipxi,xLq if li “ 1, uipxi, xPApiq,xLq
if 1 ă li ă L, and uipxi, xPApiq,xL,´iq if li “ L, where
xL,´i is the action profile of all players in level L other
than i. For example, in our running pandemic policy exam-
ple, the utility of a county depends on both the policy and
enforcement strategy of its state (its parent) and on the ulti-
mate pandemic spread and economic impact within it, both
determined largely by the behavior of the county residents
(leaf nodes). Note the considerable generality of the SHG
model. For example, an arbitrary simultaneous-move game
is a SHG with 2 levels and a “dummy” root node (utilities
of all leaves depend on one another’s actions), and an arbi-
trary Stackelberg game (e.g., Stackelberg security game),
even with many followers, can be modeled as a 2-level SHG
with the leader as root and followers as leaves. Furthermore,
while we have defined SHGs with respect to real-vector
player action sets, it is straightforward to represent mixed
strategies of finite-action games in this way by simply using
a softmax function to map an arbitrary real vector into a
valid mixed strategy.

Solution Concept Since an SHG has important sequen-
tial structure, it is natural to consider the subgame perfect
equilibrium (SPE) as the solution concept [30]. Here, we
focus on pure-strategy equilibria. To begin, we note that in
SHGs, the strategies of players in any level l ą 1 are, in
general, functions of the complete history of play in levels
1, . . . , l´1, which we denote by hăl “ px1,x2, . . . ,xl´1q.
Formally, a (pure) strategy of a player i is denoted by
siphălq, which deterministically maps an arbitrary history
hăl into an action xi P Xi. A Nash equilibrium of an SHG
is then a strategy profile s “ ps1, . . . , si, . . . , snq such that
for all i P N , uipsi, s´iq ě uips

1
i, s´iq for all possible

alternative strategies for i, s1i. Here, we denote the realized
payoff of i from profile s by uipsi, s´iq. Next, we define
a level-l-subgame given hăl as an SHG that includes only

players at levels ě l, with actions chosen in levels ă l fixed
to hăl. A strategy profile s is a subgame perfect equilibrium
of SHG if it is a Nash equilibrium of every level-l-subgame
of SHG for every l and history hăl. We prove in the long ver-
sion that our definition of SPE is equivalent to the standard
SPE in an extensive-form representation of SHG.

While in principle we can compute an SPE of an SHG using
backward induction, this cannot be done directly (i.e., by
complete enumeration of actions of all players) as actions
are real vectors. Moreover, even discretizing actions is of
little help, as the hierarchical nature of the game leads to
exponential explosion of the search space. We now present
a gradient-based approach for approximating SPE along
the equilibrium path in an SHG that leverages the game
structure to derive backpropagation-style gradient updates.

3 DIFFERENTIAL BACKWARD
INDUCTION

In this section, we describe our gradient-based algorithm,
Differential Backward Induction (DBI), for approximating
an SPE (which we mean hereinafter finding a joint-action
profile x that constitutes a subgame-perfect equilibrium
path), and then analyze its convergence. Just as gradient
ascent does not, in general, identify a globally optimal solu-
tion to a non-convex optimization problem, DBI in general
yields a solution which only satisfies first-order conditions
(see Section 3.2 for further details). Moreover, we leverage
the structure of the utility functions to focus computation
on an SPE in which strategies of players are only a function
of their immediate parents.1

In this spirit, we define local best response functions
φi : RdPApiq Ñ Rdi mapping a player i’s parent’s action
xPApiq to i’s action xi; note that the notation φi is distinct
from si above for i’s strategy to emphasize the fact that
φi is only locally optimal. Now, suppose that a player i is
in the last level L. Local optimality of φi implies that if
xi “ φipxPApiqq, then ∇xiui

`

xi,xPApiq,xL,´i
˘

“ 0 and
∇2
xi,xiui

`

xi,xPApiq,xL,´i
˘

ă 0.2

Let φl denote the local best response for all the players in
level l given the actions of all players in level l ´ 1. We can
compose these local best response functions to define the
function Φl :“ φL ˝ φL´1 ˝ . . . ˝ φl`1 : Rdnl Ñ RdnL i.e.,
the local best response of players in the last level L given
the actions of the players in level l.3 Then for any player
piq in level li ă L, Dxiui

`

xi, xPApiq,Φl pxxi,xl,´iyq
˘

“ 0

1Note that while we cannot guarantee that an SPE exists in
SHGs in general, let alone those possessing the assumed structure,
we find experimentally that our approach often yields good SPE
approximations.

2For simplicity, we omit degenerate cases where ∇2
xi,xiui “

0 and assume all local maxima are strict.
3Note that in particular ΦL “ φL.



and D2
xi,xiui

`

xi, xPApiq,Φl pxxi,xl,´iyq
˘

ă 0, where Dxi

is the total derivative with respect to xi (as Φlpxxi,xl,´iyq
is also a function of xi). Note that the functions φ and Φ
are implicit, capturing the functional dependencies between
actions of players in different levels at the local equilibrium.

Throughout, we make the following standard assumption on
the utility functions [10, 34].

Assumption 1. For any xi P Xi, the second-order partial
derivatives of the form ∇2

xi,xiui are non-singular.

3.1 ALGORITHM

The DBI algorithm works in a bottom-up manner, akin to
back-propagation: for each level l, we compute the total
derivatives (gradients) of the utility functions and local best
response maps (φ, Φ) based on analytical expressions that
we derive below. We then propagate this information up
to level l ´ 1, as it is used to compute gradients for that
level, and so on until level 1. Algorithm 1 gives the full
DBI algorithm. In this algorithm, CHDpiq denotes the set of
children of player i (i.e., nodes in level li ` 1 for whom i
is the parent). DBI works in a backward message-passing

Algorithm 1 Differential Backward Induction (DBI)
Input: An SHG instance G
Parameters: Learning rate α, maximum number of itera-

tions T for gradient update
Output: A strategy profile

Randomly initialize x0 “ xx0
1, . . . ,x

0
Ly

for t “ 1, 2, . . . , T do
for l “ L,L´ 1, . . . , 1 do

for i “ 1, 2, . . . , nl do
if l “ L then

Back-propagate DxiΦi “ I to PApiq
Set xti Ð xt´1

i ` α∇xiui
else

Compute ∇xiui,∇xLui at xt´1

Compute Dxiφj ,@j P CHDpiq (Eqn. (5))
Compute DxiΦl (Eqn. (4))
Back-propagate DxiΦl to PApiq
Compute Dxiui “ ∇xiui `

∇xLuiDxiΦl
Set xti Ð xt´1

i ` αDxiui

Return xT

manner, comparable to back-propagation: after each player
has computed its total derivative, it passes (back-propagates)
DxiΦl to its direct parent; this information is, in turn, used
by the parent to compute its own total derivative, which is
passed to its own parent, and so on.

Algorithm 1 takes the total derivates as given. We now derive
closed-form expressions for these. We start from the last
level L. Given the actions of players in level L´ 1, the total

derivative of a player i P NL with respect to xi is

Dxiui
`

xi, xPApiq,xL,´i
˘

“ ∇xiui. (1)

For a player i in level L´ 1, the total derivative (at a local
best response) is

Dxiuipxi, xPApiq,φLpxxi,xL´1,´iyqq

“ ∇xiui ` p∇xLuiq pDxiφLq , (2)

where ∇xLui is a 1ˆ dnL vector and DxiφL is a dnL ˆ d
matrix. The technical challenge here is to derive the term
DxiφL for i P NL´1. Recall that φL is the vectorized con-
catenation of the φj functions for j P NL. Since the local
best response strategy of a player in level L only depends on
its parent in level L´ 1, the only terms in φL that depend
on xi are the actions of CHDpiq in level L. Consequently, it
suffices to derive Dxiφj for j P CHDpiq. Note that for these
players j, ∇xjuj “ 0 (by local optimality of φL). We will
use this first-order condition to derive the expression for the
total derivative using the implicit function theorem.

Theorem 1 (Implicit Function Theorem (IFT) [10, The-
orem 1B.1]). . Let fpx1,x2q : Rd ˆ Rd Ñ Rd be a
continuously differentiable function in a neighborhood of
px˚1 ,x

˚
2 q such that fpx˚1 ,x

˚
2 q “ 0. Also suppose ∇x2

f ,
the Jacobian of f with respect to x2, is non-singular at
px˚1 ,x

˚
2 q. Then around a neighborhood of x˚1 , we have

a local diffeomorphism x˚2 px1q : Rd Ñ Rd such that
Dx1x2 “ ´p∇x2fq

´1 ∇x1f .

To use Theorem 1, we set f “ ∇xjuj (which satisfies the
conditions of Theorem 1 by Assumption 1), x1 “ xi and
x2 “ xj (recall that j P CHDpiq). By IFT, there exists
φjpxiq such that Dxiφj “ ´p∇2

xj ,xjujq
´1∇2

xj ,xiuj . De-
fine ∇2

j :“ ∇2
xj ,xiuj . Then

p∇xLuiq pDxiφLq “ ´
ÿ

jPCHDpiq

`

∇xjui
˘

Dxiφj

“ ´
ÿ

jPCHDpiq

`

∇xjui
˘

p∇2
xj ,xjujq

´1∇2
j .

Plugging this into Equation (2), we obtain

Dxiui
`

xi, xPApiq, φL pxL´1q
˘

“ ∇xiui ´
ÿ

jPCHDpiq

`

∇xjui
˘

p∇2
xj ,xjujq

´1∇2
j .

(3)

For a level l ă L´1, the total derivative of player i P Nl in a
local best response isDxiui “ ∇xiui`p∇xLuiq pDxiΦlq ,
where

DxiΦl “
`

Dxl`1
Φl`1

˘

pDxixl`1q



“
ÿ

jPCHDpiq

`

DxjΦl`1

˘

pDxiφjq . (4)

Applying IFT, we get

Dxiφj “ ´p∇2
xj ,xjujq

´1∇2
xj ,xiuj , (5)

for j P CHDpiq. We can apply the above procedure re-
cursively for Dxl`1

Φl`1 to derive the total derivative for
players i P Nl for l ă L´ 1:

Dxiui “ ∇xiui `

¨

˝

ÿ

jPLEAFpiq

p´1qL´l∇xjui

ź

ηPPATHpjÑiq

´

∇2
xη,xηuη

¯´1

∇2
xη,xPApηq

uη

˛

‚,

(6)

where PATHpj Ñ iq is an ordered list of nodes (players)
lying on the unique path from j to i, excluding i. Note that
Equation (6) is a generalization of Equation (3) where the
PATH only consists of the leaf player.

While the above derivation assumes the φ and Φ functions
are local best responses, in our algorithm in each iteration we
evaluate these functional expressions for the total derivatives
at the current joint action profile. This significantly reduces
computational complexity and ensures that Algorithm 1
satisfies the first-order conditions upon convergence.

3.2 CONVERGENCE ANALYSIS

As we remarked earlier, stable points of DBI are not guar-
anteed to be SPE just as stable points of gradient ascent
are not guaranteed to be globally optimal with general non-
convex objective functions. Furthermore, DBI algorithm
entails what are effectively iterative better-response updates
by players, and it is well-known that best response dynamic
processes in games will in general lead to cycles [25].

In spite of these challenges, we provide sufficient conditions
for the DBI algorithm to converge to a stable point. In partic-
ular, in the rest of this section, we first show that the gradient
updates of DBI can be written as a dynamical system and
characterize the conditions in which this system will con-
verge to an stable point (Proposition 1). We then show how
DBI can be tuned (in terms of learning rate in Proposition 2,
number of iterations in Proposition 3 and initializations in
Proposition 4) to converge to such stable points when they
exists. While the set of stable points and approximate SPEs
are not necessarily the same, we empirically show that DBI
is effective in converging to SPEs.

To begin, we observe that the gradient updates in DBI can be
interpreted as a discrete dynamical system, xt`1 “ F pxtq,
with F pxtq “ pI`αGqpxtq where G is an update gradient

vector. This discrete system can be viewed as an approxima-
tion of a continuous limit dynamical system 9x “ Gpxq (i.e.,
letting α Ñ 0). A standard solution concept for such dy-
namical systems is a locally asymptotic stable point (LASP).

Definition 1 ([13]). A continuous (or discrete) dynami-
cal system 9x “ Gpxq (or xt`1 “ F pxtq) has a locally
asymptotic stable point (LASP) x˚ if Dε ą 0, limtÑ8 xt “
x˚,@x0 P Bεpx˚q.

There are well-known necessary and sufficient conditions
for the existence of an LASP.

Proposition 1 (Characterization of LASP [35, Theo-
rem 1.2.5, Theorem 3.2.1]). A point x˚ is an LASP for the
continuous dynamical system 9x “ Gpxq if Gpx˚q “ 0 and
all eigenvalues of Jacobian matrix ∇xG at x˚ have negative
real parts. Furthermore, for any x˚ such that Gpx˚q “ 0,
if ∇xG has eigenvalues with positive real parts at x˚, then
x˚ cannot be an LASP.

Note that an LASP of DBI is an action profile of all players
that satisfies the first-order conditions, i.e., it has the prop-
erty that no player can improve their utility through a local
gradient update. While the existence of an LASP depends
on game structure, we show that under Assumption 1, and
as long as the sufficient conditions for LASP existence in
Proposition 1 are satisfied, DBI converges to LASP. We
defer all the omitted proofs to the long version.

Proposition 2. Let λ1, . . . , λd denote the eigenvalues of
the updating Jacobian ∇xG at an LASP x˚ and define
λ˚ “ arg maxiPrdsRepλiq{ |λi|2, where Re is the real part
operator. Then with a learning rate α ă ´2Repλ˚q{ |λ˚|2,
and an initial point x0 P Bεpx˚q for some ε ą 0 around
x˚, DBI converges to an LASP. Specifically, if the choice of
learning rate equals α˚ and the modulus of matrix ρpI `
α˚∇xGq “ 1´ κ ă 1, then the dynamics converge to x˚

with the rate of Opp1´ κ{2qtq.

Proposition 2 states that there exists a region such that, if
the initial point is in that region, then DBI will converge to
an LASP. We next show that if we assume first-order Lips-
chitzness for the update rule, then we can also characterize
the region of initial points which converge to an LASP.

Proposition 3. Suppose G is L-Lipschitz.4 Then for all
x0 P Bκ{2Lpx˚q, ε ą 0 and after T rounds of gradient
update, DBI will output a point xT P Bεpx˚q as long as
T ě r 2κ log

∥∥x0 ´ x˚
∥∥ {εs where κ is as defined in Propo-

sition 2.

We further show that through random initialization, the prob-
ability of reaching a saddle point is 0, which means that

4Formally, this means that DL ą 0 such that @x,x1
P

X , }Gpxq ´Gpx1
q}2 ď L}x´ x1

}2.
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Figure 2: Convergence behaviors on (a) a p1, 1, 1q game with 1-d actions (b) a p1, 1, 2q game with 1-d actions (c) a p1, 1, 1q
game with 3-d actions.

with probability 1, DBI converges to an LASP in which
players are playing local best responses.

Proposition 4. SupposeG is L-Lipschitz. Let α ă 1{L and
define the saddle points of the dynamicsG as X ˚sad “ tx˚ P
X | x˚ “ pI`αGqpx˚q, ρppI`α∇xGqpx

˚qq ą 1u. Also
let X 0

sad “ tx0 P X | limtÑ8pI ` αGqtpx0q P X ˚sadu
denote the set of initial points that converge to a saddle
point. Then µpX 0

sadq “ 0, where µ is Lebesgue measure.

While our convergence analysis does not guarantee conver-
gence to an approximate SPE, our experiments show that
DBI is in fact quite effective in doing so in practice.

4 EXPERIMENTS

In this section, we empirically investigate the following
questions: (1) the convergence rate of DBI, (2) the solution
quality of DBI, (3) the behavior of DBI in games where
we can verify global stability. All our code is written in
python. We ran our experiments on an Intel(R) Core(TM)
i7-7700HQ CPU @ 2.80GHz to obtain the results in Sec-
tions 4.1, and on an Intel(R) Core(TM) i9-9820X CPU @
3.30GHz for the rest of the experiments. 5

We evaluate the performance in terms of quality of equilib-
rium approximation as a function of the number of iterations
of a given algorithm, or its running time. Ideally, given a
collection of actions x played by players along the (ap-
proximate) equilibrium path computed, we wish to find the
largest utility gain any player can have by deviating from
this path, which we denote by εpxq. However, this computa-
tion is impossible in our setting, as it would need to consider
all possible histories as well, whereas our approach and al-
ternatives only return x along the path of play (moreover,
considering all possible histories is itself intractable).

5Code available at https://github.com/jtongxin/
SHG_DBI.

Therefore, we consider two heuristic alternatives. The first,
which we call local SPE regret, runs DBI for every player
i starting with x, and returns the greatest benefit that any
player can thereby obtain; we use this in Section 4.1. In the
rest of this section, we use the second alternative, which
we call global SPE regret. It considers for each player i in
level l a discrete grid of alternative actions, and uses best
response dynamics to compute an approximate SPE of the
level-pl ` 1q subgame to evaluate player i’s utility for each
such deviation. This approach then returns the highest regret
among all players computed in this way.

Our evaluation considers three SHG scenarios. We begin by
comparing DBI to a number of baselines on simple, stylized
SHG models, then move on to three complex hierarchical
game models motivated by concrete applications.

4.1 POLYNOMIAL GAMES

We begin by considering instances of SHGs to which we
can readily apply several state-of-the-art baselines, allowing
us a direct comparison to previous work. Specifically, we
consider 3 SHG instances with different game properties: (a)
a three-level chain structure (or the p1, 1, 1q game) with 1-d
actions (b) a “�" shape tree (or the p1, 1, 2q game) with 1-d
action spaces, and (c) and p1, 1, 1q game with 3-d actions.
In all the games, the payoffs are polynomial functions of
x with randomly generated coefficients (we can think of
these as proxies for a Taylor series approximation of actual
utility functions). The exact coefficient of these polynomial
functions as well as an analysis of the running time of each
method can be found in the long version.

We compare DBI with the following five baselines: 1)
simultaneous partial gradient ascent (SIM) [7, 25], 2)
symplectic gradient dynamics with or 3) without align-
ment (SYM_ALN and SYM, respectively) [4], 4) con-
sensus optimization (CO) [27], and 5) Hamilton gradient
(HAM) [1, 24]. SIM, SYM_ALN, SYM, CO and HAM are
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Figure 3: Solution qualities on (a) a p1, 1, 1q game with 1-d actions (b) a p1, 1, 2q game with 1-d actions (c) a p1, 1, 1q game
with 3-d actions.

all designed to compute a local Nash equilibrium [4, 7].

We start by comparing convergence behavior of DBI to the
baselines. We run all algorithm with the same initial point
and learning rate. The results are in Figure 2 where we plot
the L2 norm of total gradient for each of the algorithms (Y
axis) against the number of iterations (X axis).

In all cases, DBI converges to a critical point that meets the
first-order conditions while the baseline algorithms fail to do
so in most cases. In Figures 2(a) and (c), all baselines have
converged to a point with finite norm for the total gradients.
In (b), however, only CO and HAM converge to a stationary
point while SIM, SYM, SYM_ALN all diverge. For scenario
(b), DBI appears to be on an inward spiral to a critical point.
We further check the second-order condition (see the long
version) and verify that DBI has actually converged to local
maxima of individual payoffs in all three games.

Next, we investigate solution quality in terms of local regret
of DBI compared to baselines. As shown in Figure 3, across
all three game instances, DBI outputs a profile of actions
(along the path of play) with near-zero local regret while
other algorithm fail to do so.

4.2 DECENTRALIZED EPIDEMIC POLICY
GAME

Next, we consider DBI for solving a class of games inspired
by hierarchical decentralized policy-making in the context
of epidemics such as COVID-19 [17]. The hierarchy has lev-
els corresponding to the (single) federal government, multi-
ple states, and county administrations under each state. Each
player’s action (policy) is a scalar in r0, 1s that represents,
for example, the extent of social distancing recommended or
mandated by a player (e.g., a state) for its administrative sub-
ordinates (e.g., counties). Crucially, these subordinates have
considerable autonomy about setting their own policies, but
incur a non-compliance cost for significantly deviating from
recommendations made by the level immediately above (of
course, non-compliance costs are not relevant for the root

player). The full cost function of each player additionally
includes an infection prevalence within the geographic ter-
ritory of interest to the associated entity (e.g., within the
state), as well as the socio-economic cost of the policy itself.
To summarize, the total cost for each player is a combina-
tion of the infection cost, socio-economic cost as well as
the non-compliance cost (when applicable). However, dif-
ferent players can have different combinations of these cost
(through player-specific weights for each of the costs) that
can lead to strategic tensions between the players (see the
long version for details).
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Figure 4: Global regret for the decentralized epidemic policy
game. Top and bottom columns correspond to result for
games with 2 and 3 levels, respectively.



Since the actions are in a one-dimensional compact space
and the depth of the hierarchy is at most 3, our baseline is the
best response dynamics (BRD) algorithm proposed by Jia
et al. [17] (detailed in the long version), and we use global
regret as a measure of efficacy in comparing the proposed
DBI algorithm with BRD. The results of this comparison
are shown in Figures 4 and 5 for two-level (government
and states) and three-level (government, states, counties)
variants of this game. We consider two-level games with 20
and 50 leaves (states), and three-level games with 2 players
in level 2 (states) and 4 and 10 leaves (counties).
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Figure 5: Running time for the decentralized epidemic pol-
icy game. Top and bottom columns correspond to result for
games with 2 and 3 levels, respectively.

As we can see in Figure 4, BRD can have poor convergence
behavior in terms of global regret, whereas DBI appears to
converge quite reliably to a path of play with a considerably
lower global regret. Notably, the improvement in solution
quality becomes more substantial as we increase the game
complexity either in terms of scale (number of leaves) or in
terms of the level of hierarchy (moving from 2- to 3-level
games).

Running time (in seconds) demonstrates the relative efficacy
of DBI even further (see Figure 5). In particular, observe
the significant increase in the running time of BRD as we
increase the number of leaves. In contrast, DBI is far more
scalable: indeed, even more than doubling the number of
players appears to have little impact on its running time.
Moreover, BRD is several orders of magnitude slower than

DBI for the more complex games.

4.3 HIERARCHICAL PUBLIC GOODS GAMES
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Figure 6: Performance (ε) in the Public Goods Game; the
scatter points show the results of BRD with discretization
factors 0.5, 0.2, 0.1, 0.05, and best response rounds 2, 3.

Next, we consider hierarchical public goods games. A
conventional networked public goods game endows each
player i with a utility function uipxi, x´iq “ ai ` bixi `
ř

j gjixixj ´ cipxiq, where gji is the impact of player j on
player i (often represented as a weighted edge on a network),
and xi P r0, 1s the level of investment in the public good by
player i [6]. We construct a 3-level hierarchical variant of
such games by starting with the karate club network [36]
which represents friendships among 34 individuals. Level-2
nodes are obtained by partitioning the network into two
(sub)clubs, with leaves (level-3 nodes) representing all the
individuals. The utility of level-2 nodes is the sum of util-
ities of individual members of associated clubs, with the
utility of the root being the sum of the utilities of all individ-
uals. Furthermore, we introduce non-compliance costs with
investment policies in the level immediately above, as we
did in the decentralized epidemic policy game (Section 4.2).
Further details on the exact form of the utility functions and
parameters of the games are provided in in the long version.

Figure 6 presents the global regret as a function of running
time for DBI (black line) and BRD with different levels of
discretization (dots). We observe that DBI yields consid-
erably lower regret in these games than BRD even as we
discretize the latter finely. Moreover, DBI reaches smaller
regret orders of magnitude faster than BRD.

4.4 HIERARCHICAL SECURITY GAMES

In the final set of experiments, we evaluate DBI on a hier-
archical extension of interdependent security games [3]. In
these games, n defenders can each invest xi ě 0 in secu-
rity. If defender i is attacked, the probability that the attack
succeeds is 1{p1` xiq. Furthermore, defenders are interde-
pendent, so that a successful attack on defender i cascades
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Figure 7: Results on p1, 3, 6q hierarchical security games. (a) κ “ 0.1 and (b) κ “ 0.5; legend is shared.

to defender j with probability qji. In the variant we adopt,
the attacker strategy is a uniform distribution over defenders
(e.g., the “attacker” is just nature, with attacks representing
stochastic exogenous failures). The utility of the defender
is the probability of surviving the attack less the cost of
security investment.

We extend this simultaneous-move game to a hierarchical
structure consisting of one root player (e.g., government),
three level-2 players (e.g., sectors), and six leaf players (e.g.,
organizations). The policy-makers in the first two levels
of the game recommend an investment policy to the level
below, and aim to maximize total welfare (sum of utilities)
among the leaf players in their subtrees. Just as in both hi-
erarchical epidemic and public goods games, whenever a
player in level l does not act according to the recommenda-
tion of their parent in level l´1, they incur a non-compliance
cost. Complete model details are deferred to the long ver-
sion. We conduct experiments with two weights κ that deter-
mine the relative importance of non-compliance costs in the
decisions of non-root players in the game: κ P t0.1, 0.5u.

Figures 7(a) and 7(b) present the results of comparing DBI
with BRD on this class of games, where BRD is again eval-
uated with different levels of action space discretization
(note, moreover, that in this setting discretizing actions is
not enough, since these are unbounded, and we also had
to impose an upper bound). We can observe that for either
value of κ, DBI yields high-quality SPE approximation (in
terms of global SPE regret) far more quickly than BRD.
In particular, when we use relatively coarse discretization,
BRD is approximately an order of magnitude slower, and
yields significantly higher regret. In contrast, if we use finer
discretization for BRD, global regret for BRD and DBI
becomes comparable, but now BRD is several orders of
magnitude slower. For example, DBI converges within sev-
eral seconds, whereas if we discretize xi into multiples of
0.02, BRD takes nearly 2 hours, while discretization at the
level of 0.01 results in BRD taking nearly 7 hours.

5 CONCLUSION

We introduced a novel class of hierarchical games, proposed
a new game-theoretic solution concept and designed an
algorithm to compute it. We assume a specific form of utility
dependency between players and our solution concept only
guarantees local stability. Improvement on each of these two
fronts is an interesting direction for future work.

Given the generality of our framework, our approach can be
used for many applications characterized by a hierarchy of
strategic agents e.g., pandemic policy making. However, our
modeling requires the full knowledge of the true utility func-
tions of all players and our analysis assumes full rationality
for all the players. Although the model we have addressed
here is already challenging, these assumptions are unlikely
to hold in many real-world applications. Therefore, further
analysis is necessary to fully gauge the robustness of our
approach before deployment.
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