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Abstract

This thesis examines social interventions conducted to address societal challenges such as home-

lessness, substance abuse or suicide. In most of these applications, it is challenging to purposefully

collect data. Hence, we need to rely on social (e.g., social network data) or observational data (e.g.,

administrative data) to guide our decisions. Problematically, these datasets are prone to different

statistical or societal biases. When optimized and evaluated on these data, ostensibly impartial

algorithms may result in disparate impacts across different groups. In addition, these domains

are plagued by limited resources and/or limited data which create a computational challenge with

respect to improving the delivery of these interventions. In this thesis, I investigate the interplay

of fairness and these computational challenges which I present in two parts. In the first part, I

introduce the problem of fairness in social network-based interventions where I propose to use

social network data to enhance interventions that rely on individual’s social connectedness such

as HIV/suicide prevention or community preparedness against natural disasters. I demonstrate

how biases in the social network can manifest as disparate outcomes across groups and describe

my approach to mitigate such unfairness. In the second part, I focus on fairness challenges when

data is observational. Motivated by the homelessness crisis in the U.S., I study the problem of

learning fair resource allocation policies using observational data where I develop a methodology

that handles selection bias in the data. I conclude with a critique on the fairness metrics proposed

in the literature, both causal and observational (statistical), and I present a novel causal view

that addresses the shortcomings of existing approaches. In particular, my findings shed new light

on well-known impossibility results from the fair machine learning literature.
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Introduction

For long, societies around the globe have struggled with complex societal problems in the areas

of social justice and welfare, education or health that disproportionately impact the most vul-

nerable. Over the years, researchers, practitioners and policymakers have examined a variety of

interventions to address these social problems which I refer to as “social interventions.” Fueled by

recent algorithmic advances, there has been an increasing interest in developing evidence-based,

AI-augmented social interventions that have greater reach and impact and are tailored to the

needs of affected communities.

In particular, this thesis investigates three social problems that are critical in the current state

of our society and aims to develop trustworthy and data-driven algorithmic solutions to address

them. First is suicide prevention. Suicide is a critical public health problem in the United States

specially among the youth population such as college students, where suicide takes more than

a 1000 lives each year [9]. In this regard, the present thesis studies how we can leverage indi-

viduals’ social support to mitigate the risk of suicidal ideation and death. Another application

of this thesis is for landslide risk management. In particular, Sitka, Alaska experiences frequent

landslide incidents which cause significant damage and disruption to the lives of those affected

by it. Effective risk management depends heavily on timely and reliable access to risk informa-

tion [144]. In this thesis, I study how we can use social influence to create resilient and informed

communities that can protect themselves against landslide. Finally, this thesis investigates solu-

tions to mitigate homelessness. Cities with high homeless population often suffer from shortage
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Figure 1: Project collaborators at

RAND Corporation gather com-

ments at the Sitka Sound Science

Center in Sitka, Alaska on our re-

search on landslide preparedness.

of resources to address this problem. For instance, in Los

Angeles County, there are over 63,000 homeless individuals

and far fewer housing units to accommodate them. Further-

more, there is a significant disparity in the rate of homeless-

ness across different racial groups, hitting those from minority

groups the hardest [78]. To address these problems, this the-

sis explores equitable and data-driven policies to help match

individuals with suitable resources in order to guarantee a

high chance of safe and stable exit from homelessness. The

problems studied in this thesis are identified through close

collaborations with social scientists at RAND Corporation, a

nonprofit global policy think tank, and social work academics who specialize in social network

science and community-based research.

Despite the wealth of knowledge in fields such as public health, public policy or social work

on the underlying social phenomena, transferring that knowledge to develop practical computa-

tional models of interventions is non-trivial. Further, these interventions often give rise to highly

intractable models which are difficult to optimize. In addition, designing algorithmic solutions

in such complex real-world settings are faced with several unique challenges. Below, I highlight

some of the challenges that are central to this thesis.

Fairness: Social problems do not affect all groups equally. For instance, most minority groups in

the United States experience homelessness at higher rates than Whites, and therefore make up a

disproportionate share of the homeless population. African Americans make up 13% of the general

population, but more than 40% of the homeless population. Further, in Los Angeles County, recent

studies have found racial inequities in outcomes for Black residents of homeless services —particu-

larly residents of Permanent Supportive Housing, a long-term housing intervention —where Black
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residents are 39% more likely to return to homelessness than White residents [127]. Similar dispar-

ities exist in other areas such as risk of suicide, where studies have identified evidence of widening

gaps in rate of suicide across sex, sexual orientation, race/ethnicity, age, and socioeconomic status

subgroups among college students [91, 118]. As algorithms enter such socially-sensitive domains,

it is critical that they take the welfare of every group and individual into consideration and strive

towards equitable outcomes for all.

Data Bias: Data is central to modern decision-making. However, in these settings controlled ex-

periments are typically costly. As a result, most of available data comes from passive observations

which are prone to different forms of bias. For example, recent studies have identified structural

racism as one of the main factors for the high rate of homelessness among Black people [12]. Such

societal biases will inevitably creep into the data that is used to inform the interventions which

can be problematic as they may result in algorithms that discriminate against certain individu-

als or groups, entrenching existing inequalities. There are also naturally occurring biases. For

example, it has been shown that individuals have a tendency to associate and bond with similar

others, a phenomenon known as homophily [124]. While these natural biases are not intrinsically

objectionable, care must be taken when using this type of data for various decision-making tasks

as it may lead to undesirable disparities in the outcomes of different individuals or groups.

Resource Limitation: Designing social interventions typically involves the allocation of scarce

resources, e.g., limited housing units or social worker hours. In Los Angeles County, there are

over 63,000 homeless persons and only 21,000 housing units, most of which are temporary hous-

ing assistance. In such settings, providers often need to make complex decisions under great

uncertainty with small margins of error. This may lead to fraught decisions that either under- or

over-serve specific groups. Resource limitation further compounds fairness challenges as it raises

the question of who should or should not receive these resources.
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Data Scarcity: Real-world settings are permeated by different forms of uncertainty, e.g., un-

known availability of intervention participants, that may negatively affect the outcome of these

interventions. In practice, there may not be enough data to inform those uncertainties.

This thesis is concerned with tackling the above challenges where a special emphasis is placed

on the issue of fairness and its interplay with resource and data limitation. Specifically, the

overarching question that the present thesis aims to address is

How can we develop fair, efficient and data-driven algorithms to enhance social interventions?

I investigate this question within the context of the aforementioned social problems, namely

suicide prevention, landslide risk management and mitigating homelessness, where I propose com-

putational models of popular interventions as well as equitable and efficient algorithmic solutions.

It is noteworthy that the proposed intervention models are not restricted to the above applications

and can be generalized to address other problems that share the same underlying characteristics.

Overview of Contributions

This thesis is divided in two parts. The first part introduces the computational problem of fairness

in social network-based interventions, i.e., interventions that rely on social support and individuals’

connectedness to succeed, such as suicide prevention and community resilience for landslide risk

management. This thesis draws on material published in [76, 97, 148, 149, 150, 151, 152, 153].

Chapter 1 focuses on suicide prevention. Gatekeeper training is one of the widely used suicide

prevention interventions which involves teaching individuals to recognize and support those in

crisis. A successful intervention seeks to achieve a good coverage of the individuals in a social

network (e.g., student population). Targeted enlistment of individuals helps achieve more desirable

coverage than baseline strategies [77]. However, the performance is significantly affected by the

uncertainty in the availability and performance of the training candidates. In collaboration with

the schools of social work at the University of Denver and the University of Southern California,
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this work proposes a novel intervention model to select a limited number of individuals, with

uncertain performance, to identify warning signs of suicide among their peers in a social network.

Using social network of youth experiencing homelessness, this work demonstrates how purely

coverage-centric algorithms, such as those introduced in [42, 113, 176], may result in discriminatory

coverage across different social groups. Devising efficient solutions that perform well across groups,

even under worst-case uncertain scenarios, also poses a highly intractable problem. Chapter 1

addresses this problem by providing a novel formulation of the problem as a robust graph covering

problem with group fairness constraints. The solution approach is in the form of a tractable

approximation applicable to real-world instances. In addition, this work provides a theoretical

analysis of price of group fairness (PoF), with and without uncertainty. Specifically, it shows

that uncertainty can lead to greater PoF compared to the deterministic case which highlights the

trade-off between fairness and robustness. Empirically, the proposed method yields competitive

node coverage while significantly improving group fairness over the state-of-the-art methods.

Chapter 2 investigates interventions for community preparedness against natural hazards such

as landslide risk. In collaboration with scientists at RAND Corporation and Sitka Sound Science

Center, we identified a major challenge associated with landslide risk management to be timely

and reliable access to risk information. Community-based interventions can improve risk commu-

nication and access to information, particularly in rural and remote contexts. These interventions

often seek to engage and educate a limited set of individuals who can act as community-leaders

to spread information to others. Algorithmic influence maximization can aid with the choice of

“peer leaders” or “influencers” in such interventions. Existing techniques for fair influence max-

imization require committing to a single fairness measure or are imposed as strict constraints

leading to undesirable properties such as wastage of resources [171, 175]. Chapter 2 revisits the

problem of fairness in influence maximization from a welfare optimization perspective. It provides

a principled characterization of the properties that a fair influence maximization algorithm should

satisfy. As a result, it proposes a framework that aggregates the cardinal utilities derived by each

5



community using isoelastic social welfare functions. Under this framework, the trade-off between

fairness and efficiency can be controlled by a single inequality aversion design parameter which

is crucial specially when these solutions are deployed at scale. In addition, the proposed frame-

work encompasses as special cases leximin and proportional fairness. It is further shown that the

resulting optimization problem is monotone and submodular and can be solved efficiently with

optimality guarantees. Extensive experiments on synthetic and real world datasets including a

case study on landslide risk management demonstrate the efficacy of the proposed framework.

The second part of this thesis focuses on challenges that arise when data is observational. In

this setting, a decision-maker has to rely on passive data observations prone to selection bias. In

particular, selection bias occurs when the assignment of individuals in different groups are not

completely at random. For instance, individuals who have been exposed to a certain treatment

may be systematically different from those who have been assigned to a control group. Similarly,

individuals’ sensitive attributes may be correlated with other risk factors important for decision-

making. One can view this as a selection bias, as individuals in different sensitive groups have

different underlying risk distributions. Selection bias poses unique challenges for designing data-

driven interventions as well as unfairness evaluation which I explore in Chapters 3 and 4.

Chapter 3 focuses on the problem of mitigating homelessness. Homeless services authorities

commonly consider housing as a key solution to homelessness [139]. Despite different government

funding programs and services, the number of homeless individuals in the U.S. surpasses the avail-

able resources which necessitates strategic allocations to maximize the intervention’s effectiveness.

A natural, or rather complex, objective for housing allocation is to optimize the expected number

of people exiting homelessness from different social groups (e.g., racial groups). However, the

treatment effects of different interventions are unknown and heterogeneous. In other words, the

likelihood of a successful outcome depends on the joint characteristics of the resource and indi-

vidual which is unknown to the decision-maker and should be estimated from data. Historical

data, on the other hand, suffers from selection bias which poses a challenge for evaluating and
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optimizing policies that perform well across different protected groups. In addressing this prob-

lem, this work proposes a computational model to match heterogeneous individuals and resources

that arrive stochastically over time. Each individual, upon arrival, is assigned to a queue where

they wait to be matched to a resource. The resources are assigned in a first come first served

(FCFS) fashion according to an eligibility structure that encodes the resource types that serve

each queue. This work provides a methodology based on techniques in modern causal inference

to construct the individual queues as well as learn the matching outcomes and provide a mixed-

integer optimization (MIO) formulation to optimize the eligibility structure. The MIO problem

maximizes policy outcome subject to wait time and fairness constraints. It is very flexible, allow-

ing for additional linear domain constraints. Empirical results using data from the U.S. Homeless

Management Information System (HMIS) results in wait times as low as an FCFS policy while

improving the rate of exit from homelessness for underserved or vulnerable groups (7% higher for

the Black individuals and 15% higher for those below 17 years old).

Finally, Chapter 4 studies unfairness evaluation and mitigation in more generic decision-

making applications. In recent years, there has been increasing interest in causal reasoning

for designing fair decision-making systems due to its compatibility with legal frameworks, in-

terpretability for human stakeholders, and robustness to spurious correlations inherent in obser-

vational data, among other factors. The recent attention to causal fairness, however, has been

accompanied with great skepticism due to practical and epistemological challenges with applying

current causal fairness approaches in the literature. Motivated by the long-standing empirical

work on causality in econometrics, social sciences, and biomedical sciences, this work lays out

the conditions for appropriate application of causal fairness under the “potential outcomes frame-

work.” Specifically, it highlight key aspects of causal inference that are often ignored in the causal

fairness literature, namely the importance of specifying the nature and timing of interventions

on social categories such as race or gender. Precisely, instead of postulating an intervention on

immutable attributes, this work proposes a shift in focus to their perceptions and discuss the
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implications for fairness evaluation. Such conceptualization of the intervention is key in evaluat-

ing the validity of causal assumptions and conducting sound causal analyses including avoiding

post-treatment bias (a form of bias due to variables that have materialized after one’s sensitive

attribute is observed). Sound application of causal fairness can further address the limitations of

existing fairness metrics, including those that depend upon statistical correlations. Specifically, I

introduce causal variants of common statistical notions of fairness, and make a novel observation

that under the causal framework there is no fundamental disagreement between different notions

of fairness. Finally, extensive experiments demonstrate the effectiveness of the proposed approach

for evaluating and mitigating unfairness, specially when post-treatment variables are present.

Related Work

Interest in fairness properties of algorithms can be broadly categorized into two themes: fairness

in prediction and fairness in decision. In recent years, there has been an explosion of research

focusing on fairness in machine learning (ML). These works aim to ensure that predictions made

by ML algorithms are equitable. To this end, different notions of fairness are defined based on

one or more sensitive attributes such as age, race or gender [85, 110, 191]. Despite the variety

of individual and group fairness definitions, there is still a lack of expressiveness [126]. Most

of these definitions focus solely on the inputs and outputs of the algorithm without taking into

account the complexities of the downstream task such as constrained allocation or heterogeneity

in utility of different individuals or groups [71]. A few exceptions exist in which the authors study

a welfare-based prediction model with fairness considerations [54, 86, 92]. It is worth noting that

there is a line of work on budgeted ML which considers resource limitations such as computational

cost, time or information input [7, 55]. However, these applications do not directly relate to our

settings which require resource constraints on the model prediction.

Research on fairness in decision-making and resource allocation, on the other hand, has a

long history. Different disciplines, from operations research, computer science, mathematics to
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mechanism design and welfare economics, have studied the fair allocation allocation under different

assumptions. In this regard, a typical setting concerns a scenario where a central decision-maker

must make an allocation of goods to a number of distinct entities (e.g., individuals) in a fair

manner. A line of work studies the fair allocation problem among individuals [16, 20, 41], or

groups of agents [15, 66, 116, 166] by defining various fairness criteria. The literature tends to

focus on several primary notions of fairness: proportional division [174] (every agent receives at

least 1/n of her perceived value of resources); equitability [73] (every agent equally values their

allocations); envy-freeness [180] (every agent values their allocation at least as much as another’s)

and maximin fairness [156] (the value received by the worse-off agent is maximized).

While these notions capture fairness of allocations in many real-world applications, there are

several barriers to their adoption in practice. First, the common assumption in these works

is that utilities are given which overlooks the fact that in practice utilities are unknown and

predicted utilities, trained on past behavior, are subject to bias. In addition, they assume that

individuals’ utilities are independent of one another, i.e., changing an individual’s utility will

not affect other individuals as long as their share of resources is fixed. Moreover, real-world

decisions are subject to different forms of uncertainty. Works that study fairness under uncertainty

(e.g., unknown demand) [19, 61, 64, 130] often assume full distributional information about the

uncertain parameters. In some social settings, however, distributional information is not available

and there may be little data to inform our decisions. Finally, fairness/efficiency trade-offs is

another crucial consideration that arises in a variety of applications including organ allocation [172]

or disaster response [148]. Prior work is often limited to point-solutions, with little quantitative

understanding about the trade-off between efficiency and fairness, which impedes the applicability

of these solutions. In spite of recent efforts to discover, evaluate and mitigate algorithmic bias

and unfairness, data-driven allocation problems continue to form an important topic for fairness

considerations, especially as automated systems enter a wide range of application domains far

beyond the original computational settings of the problem. As highlighted above, there are
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many unresolved challenges that arise when we consider developing these solutions for real-world

settings. This thesis focuses on three social domains. However, it is noteworthy that the fairness

challenges and the proposed solutions are not restricted to the above applications and can be

generalized to other domains that share the same underlying characteristics.
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Part I

Fairness in Social Network-Based Interventions
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Chapter 1

Robust and Fair Graph Covering
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1.1 Introduction

We consider the problem of selecting a subset of nodes (which we refer to as ‘monitors’) in a graph

that can ‘cover’ their adjacent nodes. We are mainly motivated by settings where monitors are

subject to failure and we seek to maximize worst-case node coverage. We refer to this problem as

the robust graph covering. This problem finds applications in several critical real-world domains,

especially in the context of optimizing social interventions on vulnerable populations. Consider

for example the problem of designing Gatekeeper training interventions for suicide prevention,

wherein a small number of individuals can be trained to identify warning signs of suicide among

their peers [96]. A similar problem arises in the context of disaster risk management in remote

communities wherein a moderate number of individuals are recruited in advance and trained to

watch out for others in case of natural hazards (e.g., in the event of a landslide [155]). Previous

research has shown that social intervention programs of this sort hold great promise [96, 155].

Unfortunately, in these real-world domains, intervention agencies often have very limited resources,

e.g., moderate number of social workers to conduct the intervention, small amount of funding to

cover the cost of training. This makes it essential to target the right set of monitors to cover a

maximum number of nodes in the network. Further, in these interventions, the performance and

availability of individuals (monitors) is unknown and unpredictable. At the same time, robustness

is desired to guarantee high coverage even in worst-case settings to make the approach suitable

for deployment in the open world.

Robust graph covering problems similar to the one we consider here have been studied in the

literature, see e.g., [42, 176]. Yet, a major consideration distinguishes our problem from previous

work: namely, the need for fairness. Indeed, when deploying interventions in the open world

(especially in sensitive domains impacting life and death like the ones that motivate this work),

care must be taken to ensure that algorithms do not discriminate among people with respect to

protected characteristics such as race, ethnicity, disability, etc. In other words, we need to ensure
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Network Name Network Size Worst-case coverage of individuals by racial group (%)

White Black Hispanic Mixed Other

SPY1 95 70 36 – 86 94
SPY2 117 78 – 42 76 67
SPY3 118 88 – 33 95 69
MFP1 165 96 77 69 73 28
MFP2 182 44 85 70 77 72

Table 1.1: Racial discrimination in node coverage resulting from applying the algorithm in [176]
on real-world social networks from two homeless drop-in centers in Los Angeles, CA [17], when
1/3 of nodes (individuals) can be selected as monitors, out of which at most 10% will fail. The
numbers correspond to the worst-case percentage of covered nodes across all monitor availability
scenarios.

that independently of their group, individuals have a high chance of being covered, a notion we

refer to as group fairness.

To motivate our approach, consider deploying in the open world a state-of-the art algorithm

for robust graph covering (which does not incorporate fairness considerations). Specifically, we

apply the solutions provided by the algorithm from [176] on five real-world social networks. The

results are summarized in Table 1.1 where, for each network, we report its size and the worst-case

coverage by racial group. In all instances, there is significant disparity in coverage across racial

groups. As an example, in network SPY1 36% of Black individuals are covered in the worst-case

compared to 70% (resp. 86%) of White (resp. Mixed race) individuals. Thus, when maximizing

coverage without fairness, (near-)optimal interventions end up mirroring any differences in degree

of connectedness of different groups. In particular, well-connected groups at the center of the

network are more likely to be covered (protected). Motivated by the desire to support those that

are the less well off, we employ ideas from maximin fairness to improve coverage of those groups

that are least likely to be protected.

We investigate the robust graph covering problem with fairness constraints. Formally, given a

social network, where each node belongs to a group, we consider the problem of selecting a subset

of I nodes (monitors), when at most J of them may fail. When a node is chosen as a monitor and

does not fail, all of its neighbors are said to be ‘covered’ and we use the term ‘coverage’ to refer
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to the total number of covered nodes. Our objective is to maximize worst-case coverage when any

J nodes may fail, while ensuring fairness in coverage across groups. We adopt maximin fairness

from the Rawlsian theory of justice [156] as our fairness criterion: we aim to maximize the utility

of the groups that are worse-off. To the best of our knowledge, ours is the first work enforcing

fairness constraints in the context of graph covering subject to node failure.

We make the following contributions: (i) We achieve maximin group fairness by incorporating

constraints inside a robust optimization model, wherein we require that at least a fraction W of

each group is covered, in the worst-case; (ii) We propose a novel two-stage robust optimization

formulation of the problem for which near-optimal conservative approximations can be obtained

as a moderately-sized mixed-integer linear program (MILP). By leveraging the decomposable

structure of the resulting MILP, we propose a Benders’ decomposition algorithm augmented with

symmetry breaking to solve practical problem sizes; (iii) We present the first study of price of

group fairness (PoF), i.e., the loss in coverage due to fairness constraints in the graph covering

problem subject to node failure. We provide upper bounds on the PoF for Stochastic Block

Model networks, a widely studied model of networks with community structure; (iv) Finally, we

demonstrate the effectiveness of our approach on several real-world social networks of homeless

youth. Our method yields competitive node coverage while significantly improving group fairness

relative to state-of-the-art methods.

1.2 Related Work

This work relates to three streams of literature which we review.

Algorithmic Fairness. With increase in deployments of AI, OR, and ML algorithms for decision

and policy-making in the open world has come increased interest in algorithmic fairness. A large

portion of this literature is focused on resource allocation systems, see e.g., [33, 111, 192]. Group

fairness in particular has been studied in the context of resource allocation problems [53, 165, 173].
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A nascent stream of work proposes to impose fairness by means of constraints in an optimization

problem, an approach we also follow. This is for example proposed in [4], and in [24, 64], and

in [5] for machine learning, resource allocation, and matching problems, respectively. Several

authors have studied the price of fairness. In [33], the authors provide bounds for maximin fair

optimization problems. Their approach is restricted to convex and compact utility sets. In [21],

the authors study price of fairness for indivisible goods with additive utility functions. In our

graph covering problem, this property does not hold. Several authors have investigated notions

of fairness under uncertainty, see e.g, [18, 72, 130, 192]. These papers all assume full distribu-

tional information about the uncertain parameters and cannot be employed in our setting where

limited data is available about node availability. Motivated by data scarcity, we take a robust op-

timization approach to model uncertainty which does not require distributional information. This

problem is highly intractable due to the combinatorial nature of both the decision and uncertainty

spaces. When fair solutions are hard to compute, “approximately fair” solutions have been con-

sidered [111]. In our work, we adopt an approximation scheme. As such, our approach falls under

the “approximately fair” category. Recently, several authors have emphasized the importance of

fairness when conducting interventions in socially sensitive settings, see e.g., [13, 114, 175]. Our

work most closely relates to [175], wherein the authors propose an algorithmic framework for fair

influence maximization. We note that, in their work, nodes are not subject to failure and therefore

their approach does not apply in our context.

Submodular Optimization. One can view the group-fair maximum coverage problem as a multi-

objective optimization problem, with the coverage of each community being a separate objective.

In the deterministic case, this problem reduces to the multi-objective submodular optimization

problem [48], as coverage has the submodularity (diminishing returns) property. In addition,

moderately sized problems of this kind can be solved optimally using integer programming tech-

nology. However, when considering uncertainty in node performance/availability, the objective

function loses the submodularity property while exact techniques fail to scale to even moderate
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problem sizes. Thus, existing (exact or approximate) approaches do not apply. Our work more

closely relates to the robust submodular optimization literature. In [42, 142], the authors study

the problem of choosing a set of up to I items, out of which J fail (which encompasses as a special

case the robust graph covering problem without fairness constraints). They propose a greedy

algorithm with a constant (0.387) approximation factor, valid for J = o(
√
I), and J = o(I), re-

spectively. Finally, in [176], the authors propose another greedy algorithm with a general bound

based on the curvature of the submodular function. These heuristics, although computationally

efficient, are coverage-centered and do not take fairness into consideration. Thus, they may lead

to discriminatory outcomes, see Table 1.1.

Robust Optimization. Our solution approach closely relates to robust optimization paradigm

which is a computationally attractive framework for obtaining equivalent or conservative approx-

imations based on duality theory, see e.g., [23, 33, 189]. Indeed, we show that the robust graph

covering problem can be written as a two-stage robust problem with binary second-stage decisions

which is highly intractable in general [35]. One stream of work proposes to restrict the functional

form of the recourse decisions to functions of benign complexity [32, 36]. Other works rely on

partitioning the uncertainty set into finite sets and applying constant decision rules on each par-

tition [36, 38, 84, 146, 182]. The last stream of work investigates the so-called K-adaptability

counterpart [30, 47, 84, 154, 181], in which K candidate policies are chosen in the first stage and

the best of these policies is selected after the uncertain parameters are revealed. Our work most

closely relates to [84, 154]. In [84], the authors show that for bounded polyhedral uncertainty

sets, linear two-stage robust optimization problems can be approximately reformulated as MILPs.

Paper [154] extends this result to a special case of discrete uncertainty sets. We prove that

we can leverage this approximation to reformulate robust graph covering problem with fairness

constraints exactly for a much larger class of discrete uncertainty sets.
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1.3 Fair and Robust Graph Covering Problem

We model a social network as a directed graph G = (N , E), in which N := {1, . . . , N} is the set

of all nodes (individuals) and E is the set of all edges (social ties). A directed edge from ν to

n exists, i.e., (ν, n) ∈ E , if node n can be covered by ν. We use δ(n) := {ν ∈ N : (ν, n) ∈ E}

to denote the set of neighbors (friends) of n in G, i.e., the set of nodes that can cover node n.

Each node n ∈ N is characterized by a set of attributes (protected characteristics) such as age,

race, gender, etc., for which fair treatment is important. Based on these node characteristics, we

partition N into C disjoint groups Nc, c ∈ C := {1, . . . , C}, such that ∪c∈CNc = N .

We consider the problem of selecting a set of I nodes from N to act as ‘peer-monitors’ for their

neighbors, given that the availability of each node is unknown a-priori and at most J nodes may fail

(be unavailable). We encode the choice of monitors using a binary vector x of dimension N whose

nth element is one iff the nth node is chosen. We require x ∈ X := {x ∈ {0, 1}N : e⊤x ≤ I}, where

e is a vector of all ones of appropriate dimension. Accordingly, we encode the (uncertain) node

availability using a binary vector ξ of dimension N whose nth element equals one iff node n does

not fail (is available). Given that data available to inform the distribution of ξ is typically scarce,

we avoid making distributional assumptions on ξ. Instead, we view uncertainty as deterministic

and set based, in the spirit of robust optimization [23]. Thus, we assume that ξ can take-on

any value from the set Ξ which is often referred to as the uncertainty set in robust optimization.

The set Ξ may for example conveniently capture failure rate information. Thus, we require

ξ ∈ Ξ := {ξ ∈ {0, 1}N : e⊤(e− ξ) ≤ J}. A node n is counted as ‘covered’ if at least one of its

neighbors is a monitor and does not fail (is available). We let yn(x, ξ) denote if n is covered for

the monitor choice x and node availability ξ.

yn(x, ξ) := I
(∑

ν∈δ(n) ξνxν ≥ 1
)
.
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The coverage is then expressible as FG(x, ξ) := e⊤y(x, ξ). The robust covering problem which

aims to maximize the worst-case (minimum) coverage under node failures can be written as

max
x∈X

min
ξ∈Ξ

FG(x, ξ). (RC)

Problem (RC) ignores fairness and may result in discriminatory coverage with respect to (pro-

tected) node attributes , see Table 1.1. We thus propose to augment the robust covering problem

with fairness constraints. Specifically, we propose to achieve max-min fairness by imposing fair-

ness constraints on each group’s coverage: we require that at least a fraction W of nodes from

each group be covered. In [175], the authors show that by conducting a binary search for the

largest W for which fairness constraints are satisfied for all groups, the max-min fairness opti-

mization problem is equivalent to the one with fairness constraints. Thus, we write the robust

covering problem with fairness constraints as

{
max
x∈X

min
ξ∈Ξ

∑
c∈C

FG,c(x, ξ) : FG,c(x, ξ) ≥W |Nc| ∀c ∈ C, ∀ξ ∈ Ξ

}
, (RCfair)

where FG,c(x, ξ) :=
∑

n∈Nc
yn(x, ξ) is the coverage of group c ∈ C. Note that if |C| = 1,

Problem (RCfair) reduces to Problem (RC), and if Ξ = {e}, Problem (RCfair) reduces to the

deterministic covering problem with fairness constraints. We emphasize that our approach can

handle fairness with respect to more than one protected attribute by either: (a) partitioning the

network based on joint values of the protected attributes and imposing a max-min fairness con-

straint for each group; or (b) imposing max-min fairness constraints for each protected attribute

separately. Problem (RCfair) is computationally hard due to the combinatorial nature of both the

uncertainty and decision spaces. Lemma 1 characterizes its complexity. Proofs of all results are

in the supplementary document.

Lemma 1. Problem (RCfair) is NP-hard.
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1.4 Price of Group Fairness

In Section 1.3, we proposed a novel formulation of the robust covering problem incorporating

fairness constraints, Problem (RCfair). Unfortunately, adding fairness constraints to Problem (RC)

comes at a price to overall worst-case coverage. In this section, we study this price of group

fairness.

Definition 1. Given a graph G, the Price of Group Fairness PoF(G, I, J) is the ratio of the

coverage loss due to fairness constraints to the maximum coverage in the absence of fairness

constraints, i.e.,

PoF(G, I, J) := 1− OPTfair(G, I, J)
OPT(G, I, J)

, (1.1)

where OPTfair(G, I, J) and OPT(G, I, J) denote the optimal objective values of Problems (RCfair)

and (RC), respectively, when I monitors can be chosen and at most J of them may fail.

In this work, we are motivated by applications related to social networks, where it has been

observed that people with similar (protected) characteristics tend to interact more frequently

with one another, forming friendship groups (communities). This phenomenon, known as ho-

mophily [125], has been observed for characteristics such as race, gender, education, etc.[56]. This

motivates us to study the PoF in Stochastic Block Model (SBM) networks [70], a widely accepted

model for networks with community structure. In SBM networks, nodes are partitioned into

C disjoint communities Nc, c ∈ C. Within each community c, an edge between two nodes is

present independently with probability pin
c . Between a pair of communities c and c′ ∈ C, edges

exist independently with probability pout
cc′ and we typically have pin

c > pout
cc′ to capture homophily.

Thus, SBM networks are very adequate models for our purpose. We assume w.l.o.g. that the

communities are labeled such that: |N1| ≤ . . . ≤ |NC |.
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1.4.1 Deterministic Case.

We first study the PoF in the deterministic case for which J = 0. Lemma 2 shows that there are

worst-case networks for which PoF can be arbitrarily bad.

Lemma 2. Given ϵ > 0, there exists a budget I and a network G with N ≥ 4
ϵ +3 nodes such that

PoF(G, I, 0) ≥ 1− ϵ.

Fortunately, as we will see, this pessimistic result is not representative of the networks that

are seen in practice. We thus investigate the loss in expected coverage due to fairness constraints,

given by

PoF(I, J) := 1− EG∼SBM[OPTfair(G, I, J)]
EG∼SBM[OPT(G, I, J)]

. (1.2)

We emphasize that we investigate the loss in the expected coverage rather than the expected PoF

for analytical tractability reasons. We make the following assumptions about SBM network.

Assumption 1. For all communities c ∈ C, the probability of an edge between two individuals in

the community is inversely proportional to the size of the community, i.e., pin
c = Θ(|Nc|−1).

Assumption 2. For any two communities c, c′ ∈ C, the probability of an edge between two nodes

n ∈ Nc and ν ∈ Nc′ is pout
cc′ = O((|Nc| log2 |Nc|)−1).

Assumption 1 is based on the observation that social networks are usually sparse. This means

that most individuals do not form too many links, even if the size of the network is very large.

Sparsity is characterized in the literature by the number of edges being proportional to the number

of nodes which is the direct result of Assumption 1. Assumption 2 is necessary for meaningful

community structure in the network. We now present results for the upper bound on PoF in SBM

networks.
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Proposition 1. Consider an SBM network model with parameters pin
c and pout

cc′ , c, c
′ ∈ C, satis-

fying Assumptions 1 and 2. If I = O(logN), then

PoF(I, 0) = 1−
∑

c∈C |Nc|∑
c∈C |Nc|d(C)/d(c)

− o(1), where d(c) := log |Nc|(log log |Nc|)−1.

Proof Sketch. First, we show that under Assumption 1, the coverage within each community is

the sum of the degrees of the monitoring nodes. Then, using the assumption on I in the premise

of the proposition (which can be interpreted as a “small budget assumption”), we evaluate the

maximum coverage within each community. Next, we show that between-community coverage is

negligible compared to within-community coverage. Thus, we determine the distribution of the

monitors, in the presence and absence of fairness constraints. PoF is computed based on the these

two quantities. ■

1.4.2 Uncertain Case.

Here, imposing fairness is more challenging as we do not know a-priori which nodes may fail.

Thus, we must ensure that fairness constraints are satisfied under all failure scenarios.

Proposition 2. Consider an SBM network model with parameters pin
c and pout

cc′ , c, c
′ ∈ C, satis-

fying Assumptions 1 and 2. If I = O(logN), then

PoF(I, J) = 1−
η
∑

c∈C |Nc|
(I − J)× d(C)

−
J
∑

c∈C\{C} d(c)

(I − J)× d(C)
− o(1),

where d(c) is as in Proposition 1 and η := (I − CJ)
(∑

c∈C |Nc|/d(c)
)−1.

Proof Sketch. The steps of the proof are similar to those in the proof of Proposition 1 with

the difference that, under uncertainty, monitors should be distributed such that the fairness

constraints are satisfied even after J nodes fail. Thus, we quantify a minimum number of monitors
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Figure 1.1: PoF in the uncertain (top) and deterministic (bottom) settings for SBM networks
consisting of two communities (C = {1, 2}) where the size of the first community is fixed at
|N1| = 20 and the size of the other community is increased from |N2| = 20 to 10, 000. In the
uncertain setting, γ denotes the fraction of nodes that fail.

that should be allocated to each community. We then determine the worst-case coverage both in

the presence and absence of fairness constraints. PoF is computed based on these two quantities.

■

Propositions 1 and 2 show how PoF changes with the relative sizes of the communities for

the deterministic and uncertain cases, respectively. Our analysis shows that without fairness,

one should place all the monitors in the biggest community. Under a fair allocation however

monitors are more evenly distributed (although larger communities still receive a bigger share).

Figure 1.1 illustrates the PoF results in the case of two communities for different failure rates γ

(J = γI), ignoring the o(.) order terms. We keep the size of the first (smaller) community fixed

and vary the size of the larger community. In both cases, if |N1| = |N2|, the PoF is zero since

uniform distribution of monitors is optimal. As |N2| increases, the PoF increases in both cases.

Further increases in |N2| result in a decrease in the PoF for the deterministic case: under a fair

allocation, the bigger community receives a higher share of monitors which is aligned with the

total coverage objective. Under uncertainty however, the PoF is non-decreasing: to guarantee
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fairness, additional monitors must be allocated to the smaller groups. This also explains why PoF

increases with γ.

1.5 Solution Approach

Given the intractability of Problem (RCfair), see Lemma 1, we adopt a conservative approxi-

mation approach. To this end, we proceed in three steps. First, we note that a difficulty of

Problem (RCfair) is the discontinuity of its objective function. Thus, we show that (RCfair) can

be formulated equivalently as a two-stage robust optimization problem by introducing a fictitious

counting phase after ξ is revealed. Second, we propose to approximate this decision made in the

counting phase (which decides, for each node, whether it is or not covered). Finally, we demon-

strate that the resulting approximate problem can be formulated equivalently as a moderately

sized MILP, wherein the trade-off between suboptimality and tractability can be controlled by a

single design parameter.

1.5.1 Equivalent Reformulation.

For any given choice of x ∈ X and ξ ∈ Ξ, the objective FG(x, ξ) can be explicitly expressed as the

optimal objective value of a covering problem. As a result, we can express (RCfair) equivalently

as the two-stage linear robust problem

max
x∈X

min
ξ∈Ξ

max
y∈Y

∑
n∈N

yn : yn ≤
∑

ν∈δ(n)

ξνxν , ∀n ∈ N

 , (1.3)

see Proposition 3 below. The second-stage binary decision variables y ∈ Y := {y ∈ {0, 1}N :∑
n∈Nc

yn ≥W |Nc|, ∀c ∈ C} admit a very natural interpretation: at an optimal solution, yn = 1

if and only if node n is covered. Henceforth, we refer to y as a covering scheme.
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Definition 2 (Upward Closed Set). A set X given as a subset of the partially ordered set [0, 1]N

equipped with the element-wise inequality, is said to be upward closed if for all x ∈ X and x̄ ∈

[0, 1]N such that x̄ ≥ x, it holds that x̄ ∈ X .

Intuitively, sets involving lower bound constraints on the (sums of) parameters satisfy this

definition. For example, sets that require a minimum fraction of nodes to be available. We can

also consider group-based availability and require a minimum fraction of nodes to be available in

every group.

Assumption 3. We assume that: The set Ξ is defined through Ξ := {0, 1}N ∩T for some upward

closed set T given by T := {ξ ∈ RN : Aξ ≥ b}, with A ∈ RR×N and b ∈ RR.

Proposition 3. Problems (RCfair) and (1.3) are equivalent.

K-adaptability Counterpart. Problem (1.3) has the advantage of being linear. Yet, its

max-min-max structure precludes us from solving it directly. We investigate a conservative ap-

proximation to Problem (1.3) referred to as K-adaptability counterpart, wherein K candidate

covering schemes are chosen in the first stage and the best (feasible and most accurate) of those

candidates is selected after ξ is revealed. Formally, the K-adaptability counterpart of Prob-

lem (1.3) is

maximize
x∈X

yk∈Y, k∈K

min
ξ∈Ξ

max
k∈K

∑
n∈N

yk
n : yk

n ≤
∑

ν∈δ(n)

ξνxν ∀n ∈ N

 , (1.4)

where yk denotes the kth candidate covering scheme, k ∈ K. We emphasize that the covering

schemes are not inputs but rather decision variables of the K-adaptability problem. Only the

value K is an input. The optimization problem will identify the best K covering schemes that

satisfy all the constraints including fairness constraints. The trade-off between optimality and

computational complexity of Problem (1.4) can conveniently be tuned using the single parame-

ter K.
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Reformulation as an MILP. We derive an exact reformulation for the K-adaptability coun-

terpart (1.4) of the robust covering problem as a moderately sized MILP. Our method extends the

results from [154] to significantly more general uncertainty sets that are useful in practice, and to

problems involving constraints on the set of covered nodes. Henceforth, we let L := {0, . . . , N}K ,

and we define L+ := {ℓ ∈ L : ℓ > 0} and L0 := {ℓ ∈ L : ℓ ≯ 0}. We present a variant of the

generic K-adaptability Problem (1.4), where the uncertainty set Ξ is parameterized by vectors

ℓ ∈ L. Each ℓ is a K-dimensional vector, whose kth component encodes if the kth covering scheme

satisfies the constraints of the second stage maximization problem. In this case, ℓk = 0. Else, if

the kth covering scheme is infeasible, ℓk is equal to the index of a constraint that is violated.
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Theorem 1. Under Assumption 3, Problem (1.4) is equivalent to the mixed-integer bilinear pro-

gram

max τ

s.t. τ ∈ R, x ∈ X , yk ∈ Y ∀k ∈ K

θ(ℓ), βk(ℓ) ∈ RN
+ , α(ℓ) ∈ RR

+, ν(ℓ) ∈ RK
+ , λ(ℓ) ∈ ∆K(ℓ)

τ ≤ −e⊤θ(ℓ) +α(ℓ)⊤b−
∑
k∈K:
ℓk ̸=0

(
yk
ℓk
− 1

)
νk(ℓ) + . . .

. . .+
∑
k∈K:
ℓk=0

∑
n∈N

yk
nβ

k
n(ℓ) +

∑
k∈K

λk(ℓ)
∑
n∈N

yk
n

θn(ℓ) ≤ A⊤α(ℓ) +
∑
k∈K:
ℓk ̸=0

∑
ν∈δ(ℓk)

xννk(ℓ)−
∑
k∈K:
ℓk=0

∑
ν∈δ(n)

xνβ
k
n(ℓ) ∀n ∈ N



∀ℓ ∈ L0

θ(ℓ) ∈ RN
+ , α(ℓ) ∈ RR

+, ν(ℓ) ∈ RK
+

1 ≤ −e⊤θ(ℓ) +α(ℓ)⊤b−
∑
k∈K:
ℓk ̸=0

(
yk
ℓk
− 1

)
νk(ℓ)

θn(ℓ) ≤ A⊤α(ℓ) +
∑
k∈K:
ℓk ̸=0

∑
ν∈δ(ℓk)

xννk(ℓ) ∀n ∈ N



∀ℓ ∈ L+,

(1.5)

which can be reformulated equivalently as an MILP using standard “Big-M ” techniques since all

bilinear terms are products continuous and binary variables. The size of this MILP scales with

|L| = (N + 1)K ; it is polynomial in all problem inputs for any fixed K.

Proof Sketch. The reformulation relies on three key steps: First, we partition the uncertainty

set by using the parameter ℓ. Next, we show that by relaxing the integrality constraint on the

uncertain parameters ξ, the problem remains unchanged. This is the key result that enables us

to provide an equivalent formulation for Problem (1.4). Finally, we employ linear programming
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duality theory, to reformulate the robust optimization formulation over each subset. As a result,

the formulation has two sets of decision variable: (a) The decision variables of the original problem;

(b) Dual variables parameterized by ℓ which emerge from the dualization. ■

1.5.2 Bender’s Decomposition.

In Problem (1.5), once binary variables x and {yk}k∈K are fixed, the problem decomposes across ℓ,

i.e., all remaining variables are real valued and can be found by solving a linear program for each ℓ.

Bender’s decomposition is an exact solution technique that leverages such decomposable structure

for more efficient solution [25, 37]. Each iteration of the algorithm starts with the solution of a

relaxed master problem, which is fed into the subproblems to identify violated constraints to add

to the master problem. The process repeats until no more violated constraints can be identified.

The formulations of master and subproblems are provided in Appendix A.

Symmetry Breaking Constraints. Problem (1.5) presents a large amount of symme-

try. Indeed, given K candidate covering schemes y1, . . . ,yK , their indices can be permuted to

yield another, distinct, feasible solution with identical cost. The symmetry results in significant

slow down of the Brand-and-Bound procedure [39]. Thus, we introduce symmetry breaking con-

straints in the formulation (1.5) that stipulate the candidate covering schemes be lexicographically

decreasing. We refer to [181] for details.

1.6 Results on Social Networks of Homeless Youth

We evaluate our approach on the five social networks from Table 1.1. Details on the data are

provided in Section A.1. We investigate the robust graph covering problem with maximin racial

fairness constraints. All experiments were ran on a Linux 16GB RAM machine with Gurobi v6.5.0.

First, we compare the performance of our approach against the greedy algorithm of [176] and

the degree centrality heuristic (DC). The results are summarized in Figure 1.2 (left). From the
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Figure 1.2: Left figure: Solution quality (overall worst-case coverage versus worst-case coverage of
the group that is worse-off) for each approach (DC, Greedy, and K-adaptability for K = 1, 2, 3);
The points represent the results of each approach applied to each of the five real-world social
networks from Table 1.1; Each shaded area corresponds to the convex hull of the results associated
with each approach; Approaches that are more fair (resp. efficient) are situated in the right- (resp.
top-)most part of the graph. Right figure: Average of the ratio of the objective value of the master
problem to the network size (across the five instances) in dependence of solver time for the Bender’s
decomposition approach (dotted line) and the Bender’s decomposition approach augmented with
symmetry breaking constraints (solid line). For both sets of experiments, the setting was I = N/3
and J = 3.

figure, we observe that an increase in K results in an increase in performance along both axes,

with a significant jump from K = 1 to K = 2, 3 (recall that K controls complexity/optimality

trade-off of our approximation). We note that the gain starts diminishing from K = 2 to K = 3.

Thus, we only run up to K = 3. In addition the computational complexity of the problem

increases exponentially with K, limiting us to increase K beyond 3 for the considered instances.

As demonstrated by our results, K ∼ 3 was sufficient to considerably improve fairness of the

covering at moderate price to efficiency. Compared to the baselines, with K = 3, we significantly

improve the coverage of the worse-off group over greedy (resp. DC) by 11% (resp. 23%) on average

across the five instances.

Second, we investigate the effect of uncertainty on the coverage of the worse-off group and

on the PoF, for both the deterministic (J = 0) and uncertain (J > 0) cases as the number of

monitors I is varied in the set {N/3, N/5, N/7}. These settings are motivated by numbers seen

in practice (typically, the number of people that can be invited is 15-20% of network size). Our

results are summarized in Table 1.2. Indeed, from the table, we see for example that for I = N/3
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Name Size N

Improvement in Min. Percentage Covered (%) PoF (%)

Uncertainty Level J Uncertainty Level J

0 1 2 3 4 5 0 1 2 3 4 5
SPY1 95 15 16 14 10 10 9 1.4 1.0 2.1 1.3 3.3 4.2
SPY2 117 20 14 9 10 8 10 0.0 1.2 3.7 3.3 3.6 3.7
SPY3 118 20 16 16 15 11 10 0.0 3.4 4.8 6.4 3.2 4.0
MFP1 165 17 15 7 11 14 9 0.0 3.1 5.4 2.4 6.3 4.4
MFP2 182 11 12 10 9 12 12 0.0 1.0 1.0 2.2 2.4 3.6

Avg. (I = N/3) 16.6 14.6 11.2 11.0 11.0 10.0 0.3 1.9 3.4 3.1 3.8 4.0
Avg. (I = N/5) 15.0 13.8 14.0 10.0 9.0 6.7 0.6 2.1 3.2 3.2 3.9 3.8
Avg. (I = N/7) 12.2 11.4 11.2 11.4 8.2 6.4 0.1 2.5 3.5 3.2 3.5 4.0

Table 1.2: Improvement on the worst-case coverage of the worse-off group and associated PoF
for each of the five real-world social networks from Table 1.1. The first five rows correspond to
the setting I = N/3. In the interest of space, we only show averages for the settings I = N/5
and I = N/7. In the deterministic case (J = 0), the PoF is measured relative the coverage of
the true optimal solution (obtained by solving the integer programming formulation of the graph
covering problem). In the uncertain case (J > 0), the PoF is measured relative to the coverage of
the greedy heuristic of [176].

and J = 0 our approach is able to improve the coverage of the worse-off group by 11-20% and for

J > 0 the improvement in the worse-case coverage of the worse-off group is 7-16%. On the other

hand, the PoF is very small: 0.3% on average for the deterministic case and at most 6.4% for the

uncertain case. These results are consistent across the range of parameters studied. We note that

the PoF numbers also match our analytical results on PoF in that uncertainty generally induces

higher PoF.

Third, we perform a head-to-head comparison of our approach for K = 3 with the results in

Table 1.1. Our findings are summarized in Table A.3 in Section A.1. As an illustration, in SPY3,

the worst-case coverage by racial group under our approach is: White 90%, Hispanic 44%, Mixed

85% and Other 87%. These numbers suggest that coverage of Hispanics (the worse-off group) has

increased from 33% to 44%, a significant improvement in fairness. To quantify the overall loss

due to fairness, we also compute PoF values. The maximum PoF across all instances was at most

4.2%, see Table A.3.

Finally, we investigate the benefits of augmenting our formulation with symmetry breaking

constraints. Thus, we solve all five instances of our problem with the Bender’s decomposition
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approach with and without symmetry breaking constraints. The results are summarized in Fig-

ure 1.2 (right). Across our experiments, we set a time limit of 2 hours since little improvement

was seen beyond that. In all cases, and in particular for K = 2 and 3, symmetry breaking results

in significant speed-ups. For K = 3 (and contrary to Bender’s decomposition augmented with

symmetry breaking), Bender’s decomposition alone fails to solve the master problem to optimal-

ity within the time limit. We would like to remark that employing K-adaptability is necessary:

indeed, Problem (RCfair) would not fit in memory. Similarly, using Bender’s decomposition is

needed: even for moderate values of K (2 to 3), the K-adaptability MILP (1.5) could not be

loaded in memory.

1.7 Conclusion and Broader Impact

We believe that the robust graph covering problem with fairness constraints is worthwhile to

investigate. It poses a huge number of challenges and holds great promise in terms of the realm of

possible real-world applications with important potential societal benefits, e.g., to prevent suicidal

ideation and death and to protect individuals during disasters such as landslides.
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Chapter 2

Fair Influence Maximization via Welfare Optimization
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2.1 Introduction

The success of many behavioral, social, and public health interventions relies heavily on effectively

leveraging social networks [96, 175, 178]. For instance, health interventions such as suicide/HIV

prevention [190] and community preparedness against natural disasters involve finding a small

set of well-connected individuals who can act as peer-leaders to detect warning signals (suicide

prevention) or disseminate relevant information (HIV prevention or landslide risk management).

The influence maximization framework has been employed to find such individuals [185]. How-

ever, such interventions may lead to discriminatory solutions as individuals from racial minorities

or LGBTQ communities may be disproportionately excluded from the benefits of the interven-

tion [151, 175].

Recent work has incorporated fairness directly into influence maximization by proposing var-

ious notions of fairness such as maximin fairness [151] and diversity constraints [175]. Maximin

fairness aims at improving the minimum amount of influence that any community receives. In-

spired by the game theory literature, diversity constraints ensure that each community is at least

as well-off had they received their share of resources proportional to their size and allocated them

internally. Each of these notions offers a unique perspective on fairness. However, they also come

with drawbacks. For example maximin fairness can result in significant degradation in total in-

fluence due to its stringent requirement to help the worst-off group as much as possible, where in

reality it may be hard to spread the influence to some communities due to their sparse connec-

tions. On the other hand, while the diversity constraints aim at taking the community’s ability in

spreading influence into account, it does not explicitly account for reducing inequality (i.e., does

not exhibit inequality aversion). Consequently, there is no universal agreement on what fairness

means and in fact, it is widely known that fairness is domain dependent [135]. For example, ex-

cluding vulnerable communities from suicide prevention might have higher negative consequences

compared to interventions promoting a healthier lifestyle.
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Building on cardinal social welfare theory from the economics literature and principles of social

welfare, we propose a principled characterization of the properties of social influence maximiza-

tion solutions. In particular, we propose a framework for fair influence maximization based on

social welfare theory, wherein the cardinal utilities derived by each community are aggregated

using the isoelastic social welfare functions [26]. Isoelastic functions are in the general form of

uα/α, α < 1, α ̸= 0 and log u, α = 0 where α is a constant and controls the aversion to inequality

and u is the utility value. They are used to measure the goodness or desirability of a utility dis-

tribution. However, due to the structural dependencies induced by the underlying social network,

i.e., between-community and within-community edges, social welfare principles cannot be directly

applied to our problem. Our contributions are as follows:

• We extend the cardinal social welfare principles including the transfer principle to the in-

fluence maximization framework, which is otherwise not applicable. We also propose a new

principle which we call utility gap reduction. This principle aims to avoid situations where

high aversion to inequality leads to even more utility gap, caused by between-community

influence spread.

• We generalize the theory regarding these principles and show that for all problem instances,

there does not exist a welfare function that satisfies all principles. Nevertheless, we show

that if all communities are disconnected from one another (no between-community edges),

isoelastic welfare functions satisfy all principles. This result highlights the importance of

network structure, specifically between-community edges.

• Under this framework, the trade-off between fairness and efficiency can be controlled by a

single inequality aversion parameter α. This allows a decision-maker to effectively trade-off

quantities like utility gap and total influence by varying this parameter in the welfare func-

tion. We then incorporate these welfare functions as objective into an optimization problem
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to rule out undesirable solutions. We show that the resulting optimization problem is mono-

tone and submodular and, hence, can be solved with a greedy algorithm with optimality

guarantees; (iv) Finally, we carry out detailed experimental analysis on synthetic and real

social networks to study the trade-off between total influence spread and utility gap. In

particular, we conduct a case study on the social network-based landslide risk management

in Sitka, Alaska. We show that by choosing α appropriately we can flexibly control utility

gap (4%-26%) and the resulting influence degradation (36% - 5%).

2.2 Related Work

Artificial Intelligence and machine learning algorithms hold great promise in addressing many

pressing societal problems. These problems often pose complex ethical and fairness issues which

need to be addressed before the algorithms can be deployed in the real world. The nascent field of

algorithmic fairness has emerged to address these fairness concerns. To this end, different notions

of fairness are defined based on one or more sensitive attributes such as age, race or gender. For

example, in the classification and regression setting, these notions mainly aim at equalizing a

statistical quantity across different communities or populations [85, 191]. While surveying the

entirety of this field is out of the score scope (see e.g., [28] for a recent survey), we point out that

there is a wide range of fairness notions defined across different settings and it has been shown

that the right notion is problem dependent [27, 135] and also different notions of fairness can be

incompatible with each other [110]. Thus, care must be taken when we employ these notions of

fairness across different applications.

Motivated by the importance of fairness when conducting interventions in social initiatives,

fair influence maximization has received a lot of attention recently [6, 72, 151, 175]. These works

have incorporated fairness directly into the influence maximization framework by (1) relying on

either Rawlsian theory of justice [156, 151], (2) game theoretic principles [175] or (3) equality based
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notions [6, 171]. We will discuss the first two approaches in more details in Sections 2.4 and 2.5,

as well as in our experimental section. Equality based approaches strive for equal outcomes across

different communities. In general, strict equality is hard to achieve and may lead to wastage

of resources. This is amplified in influence maximization as different communities have different

capacities in being influenced (e.g., marginalized communities are hard to reach). In [72], the

authors investigate the notion of information access gap, where they propose maximizing the

minimum probability that an individual is being influenced/informed to constrain this gap. As

a result they study fairness at an individual level while we study fairness at the group level.

Also, their notion of access gap is limited to the gap in a bipartition of the network which is

in principle different from utility gap that we study which accommodates arbitrary number of

protected groups. Similar to our work, in [6] the authors also study utility gap. They propose an

optimization model that directly penalizes utility gap which they solve via a surrogate objective

function. Their surrogate functions are in the form of a sum of concave functions of the group

utilities which are aggregated with arbitrary weights. Unlike their work, our approach takes

an axiomatic approach with strong theoretical justifications and it does not allow for arbitrary

concave functions and weights as they violate the welfare principles.

There has also been a long line of work considering fairness in resource allocation problems

(see e.g., [33, 111, 43, 41]). More recently, group fairness has been studied in the context of

resource allocation problems [53, 64, 24] and specifically in graph covering problems [151]. In

resource allocation setting, maximin fairness and proportional fairness are widely adopted fairness

notions. Proportional fairness is a notion introduced for bandwidth allocation [43]. An allocation

is proportionally fair if the sum of percentage-wise changes in the utilities of all groups cannot

be improved with another allocation. In classical resource allocation problems, each individual

or group has a utility function that is independent of the utilities of others individuals or groups.

However, this is not the case in influence maximization due to the underlying social network

structure i.e., the between-community edges which makes our problem distinct from the classical
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resource allocation problems. We note that, while in the bandwidth allocation setting there is

also a network structure, the utility of each vertex is still independent of the other vertices and is

only a function of the amount of resources that the vertex receives.

Social welfare functions have been used within the economic literature to study trade-offs be-

tween equality and efficiency [167] and have been widely adopted in different decision making

areas including health [1]. Recently, the authors in [86] proposed to study inequality aversion

and welfare through cardinal welfare theory in the context of regression problems. Their main

contribution is to use this theory to draw attention to other fairness considerations beyond equal-

ity. However, the classical social welfare theory, does not readily extend to our setting due to

dependencies induced by the between-community connections. Indeed, extending those principles

is a contribution of our work.

2.3 Problem Formulation

We use G = (V, E) to denote a graph (or network) in which V is the set of N vertices and E

is the set of edges. In the influence maximization problem, a decision-maker chooses a set of

at most K vertices to influence (or activate). The selected vertices then spread the influence

in rounds according to the Independent Cascade Model [105].1 Under this model, each newly

activated vertex spreads the influence to its neighbors independently and with a fixed probability

p ∈ [0, 1]. The process continues until no new vertices are influenced. We use A to denote the

initial set of vertices, also referred to as influencer vertices. The goal of the decision-maker is to

select a set A to maximize the expected number of vertices that are influenced at the end of this

process. Each vertex of the graph belongs to one of the disjoint communities (empty intersection)

c ∈ C := {1, . . . , C} such that V1 ∪ · · · ∪ VC = V where Vc denotes the set of vertices that belong

to community c. This partitioning can be induced by, e.g., the intersection of a set of (protected)

1Our framework is also applicable to other forms of diffusion such as Linear Threshold Model [105]
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attributes such as race or gender for which fair treatment is important. We use Nc to denote

the size of community c, i.e., Nc = |Vc|. Furthermore, communities may be disconnected, in

which case ∀c, c′ ∈ C and ∀v ∈ Vc, v′ ∈ Vc′ , there is no edge between v and v′ (i.e., (v, v′) /∈ E).

We define A⋆ := {A ⊆ V | |A| ≤ K} as the set of budget-feasible influencers. Finally, for any

choice of influencers A ∈ A⋆, we let uc(A) denote the utility, i.e., the expected fraction of the

influenced vertices of community c, where the expectation is taken over randomness in the spread

of influence. The standard influence maximization problem solves the optimization problem

maximize
A∈A⋆

∑
c∈C

Ncuc(A). (2.1)

When clear from the context, we will drop the dependency of uc(A) on A to minimize notational

overhead.

2.4 Existing Notions of Fairness

Problem (2.1) solely attempts to maximize the total influence which is also known as the utilitarian

approach. Existing fair influence maximization problems are variants of Problem (2.1) involving

additional constraints. We detail these below.

Maximin Fairness (MMF). Based on the Rawlsian theory [156], MMF [175] aims to maximize

the utility of the worst-off community. Precisely, MMF only allows A ∈ A⋆ that satisfy the

following constraint

min
c∈C

uc(A) ≥ γ, where A ∈ A⋆,

where the left term is the utility of the worst-off community and γ is the highest value for which

the constraint is feasible.

Diversity Constraints (DC). Inspired by the game theoretic notion of core, DC requires

that every community obtains a utility higher than when it receives resources proportional to its
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size and allocates them internally [175]. This is illustrated by the following constraint where Uc

denotes the maximum utility that community c can achieve with a budget equal to ⌊KNc/N⌋.

uc(A) ≥ Uc, ∀c ∈ C where A ∈ A⋆. (2.2)

DC sets utility lower bounds for communities based on their relative sizes and how well they can

spread influence internally. As a result, it does not explicitly account for reducing inequalities and

may lead to high influence gap. We show this both theoretically and empirically in Sections 2.5.4

and 2.6.

Demographic Parity (DP). Formalizing the legal doctrine of disparate impact [191], DP

requires the utility of all communities to be roughly the same. For any δ ∈ [0, 1), DP implies the

constraints [4, 6, 171]

∣∣uc(A)− uc′(A)
∣∣ ≤ δ, ∀c, c′ ∈ C where A ∈ A⋆.

The degree of tolerated inequality is captured by δ and higher δ values are associated with higher

tolerance. We use exact and approximate DP to distinguish between δ = 0 and δ > 0.

2.5 Fair Influence Maximization

2.5.1 Cardinal Welfare Theory Background

Following the cardinal welfare theory [26], our aim is to design welfare functions to measure the

goodness of the choice of influencers. Cardinal welfare theory proposes a set of principles and

welfare functions that are expected to satisfy these principles. Given two utility vectors, these

principles determine if they are indifferent or one of them is preferred. For ease of exposition, let

W denote this welfare function defined over the utilities of all individuals in the population (we
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will formalize W shortly). Then the existing principles of social welfare theory can be summarized

as follows. Throughout this section, without loss of generality, we assume all utility vectors belong

to [0, 1]N .

(1) Monotonicity. If u ≺ u′, then W (u) < W (u′).2 In other words, if u′ Pareto dominates

u, then W should strictly prefer u′ to u. This principle also appears as levelling down objection

in political philosophy [143].

(2) Symmetry. W (u) = W (P (u)), where P (u) is any element-wise permutation of u. Ac-

cording to this principle, W does not depend on the naming or labels of the individuals, but only

on their utility levels.

(3) Independence of Unconcerned Individuals. Let (u|cb) be a utility vector that is

identical to u, except for the utility of individual c which is replaced by a new value b. The

property requires that for all c, b, b′,u and u′, W (u|cb) < W (u′|cb) ⇔ W (u|cb′) < W (u′|cb′).

Informally, this principle states that W should be independent of individuals whose utilities remain

the same.

(4) Affine Invariance. For any a > 0 and b, W (u) < W (u′)⇔W (au+ b) < W (au′ + b) i.e.,

the relative ordering is invariant to a choice of numeraire.

(⋆5) Transfer Principle [57, 145]. Consider individuals i and j in utility vector u such that

ui < uj . Let u′ be another utility vector that is identical to u in all elements except i and j where

u′
i = ui + δ and u′

j = uj − δ for some δ ∈ (0, (uj − ui)/2). Then, W (u) < W (u′). Informally,

transferring utility from a high-utility to a low-utility individual should increase social welfare.

It is well-known that any welfare function W that satisfies the first four principles is additive

and in the form of Wα(u) = ΣN
i=1u

α
i /α for α ̸= 0 and Wα(u) = ΣN

i=1 log(ui) for α = 0. Further, for

α < 1 the last principle is also satisfied. In this case α can be interpreted as an inequality aversion

parameter, where smaller α values exhibit more aversion towards inequalities. We empirically

investigate the effect of α in Section 2.6.

2≺ means uc ≤ u′
c for all c ∈ C and uc < u′

c for some c ∈ C.
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Figure 2.1: The effect of network structure and in particular between-community edges on cou-
pling of the utilities of communities. The figure shows two sample networks consisting of three
communities, differentiated by shape: (a) is the same as (b) except that between-community edges
are removed. Black fillings show the choice of influencers. We further assume p is small enough
such that influence spread dissipates after one step. Transferring an influencer from circles to
squares (top to bottom panel) affects the utility of diamonds in (b) but not in (a).

2.5.2 Group Fairness and New Principles

Applying the cardinal social welfare framework to influence maximization problems comes with

new challenges. We next highlight these challenges and demonstrate our approach.

First, the original framework of cardinal welfare theory defines the welfare function over in-

dividuals. This is equivalent to seeking equality in the probability that each individual will be

influenced, similar to the work of [72]. It is notoriously hard to achieve individual fairness in

practice, e.g., in [63] the authors explore this in the machine learning context. The problem is

further exacerbated in influence maximization because it is not always possible to spread the

influence to isolated or poorly connected individuals effectively. Therefore, we focus on group

fairness whereby the utility of each individual is defined as the average utility of the members

of that community. Let uc denote the average utility of community c. With this group-wise

view, a welfare function can be written in terms of the average utilities over communities e.g.,

Wα(u) = ΣN
i=1u

α
i /α = Σc∈CNcu

α
c /α.

Moreover, while principles 1-4 can be easily extended to our influence maximization problem,

this is not the case for the transfer principle. More precisely, in the influence maximization

problem it might not be feasible to directly transfer utilities from one community to another
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without affecting the utilities of other communities. We highlight this effect with an example,

see Figure 2.1. In this figure, each community is represented by a distinct shape. The two

networks (a) and (b) are identical except that between community edges are removed in network

(a) (i.e., disconnected communities). The solid black vertices determine the choice of influencers.

In network (b), if we transfer an influencer vertex from circles to squares according to Figure 2.1

(top to bottom panel), it will indirectly affect diamonds as well. This effect is absent in network (a)

as there are no between-community edges to allow the spread of influence across communities. In

network (a), the transfer principle prefers the resulting utility vector after the transfer. However,

this principle cannot be applied to network (b) as the utilities of more than one community is

modified after the transfer. Additionally, even when direct transfer is possible, it can be the

case that there is no symmetry in the amount of utility gained by low-utility community and

the amount of utility lost by high-utility community after the transfer. To address both of these

shortcomings we introduce the influence transfer principle as a generalization of the transfer

principle for influence maximization problems.

Similar to the original transfer principle, we consider solutions in which influencer vertices are

transferred from one community to another community. Without loss of generality, we focus on

the case where only one influencer vertex is transferred between the two communities. We refer

to such solutions as neighboring solutions. Clearly, transfer of more than one influencer vertex

can be seen as a sequence of transfers between neighboring solutions.

(5) Influence Transfer Principle. Let A and A′ ∈ A⋆ be two neighboring solutions with

corresponding utility vectors u = u(A) and u′ = u(A′). Suppose the elements of u and u′ are

sorted in ascending order. We also assume after the transfer, the ordering of the utilities stays

the same across u and u′.

If Σκ∈C:κ≤cNκ(u
′
κ − uκ) ≥ 0 ∀c ∈ C and u′

c > uc for some c ∈ C, then W (u) < W (u′).

Informally, influence transfer principle states that in a desirable transfer of utilities, the magni-

tude of the improvement in lower-utility communities should be at least as high as the magnitude
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of decay in higher-utility communities while enforcing that at least one low-utility community

receives a higher utility after the transfer. The original transfer is a special case of influence

transfer principle when communities are disconnected and utilities transferred remain the same.

Next, we study whether any of the welfare functions that satisfy the first 4 principles satisfy the

influence transfer principle. In Proposition 4, we show any additive and strictly concave function

satisfies influence transfer principle. Since functions that satisfy the first 4 principles are strictly

concave for α < 1, the influence transfer principle is automatically satisfied in this regime. We

defer all proofs to the Appendix B.

Proposition 4. Any strictly concave and additive function satisfies influence transfer principle.

To measure inequality, notion of utility gap (or analogous notions such as ratio of utilities) is

commonly used [72, 171]. Utility gap measures the difference between the utilities of a pair of

communities. In this work, we focus on the maximum utility gap, i.e., the gap between communi-

ties with the highest and lowest utilities (utility gap henceforth). For a utility vector u, we define

∆(u) = max
c∈C

uc − min
c∈C

uc to denote the utility gap. Fair interventions are usually motivated by

the large utility gap before the intervention [123]. In [72], the authors have shown that in social

networks the utility gap can further increase after an algorithmic influence maximizing interven-

tion. We extend this result to the entire class of welfare functions that we study in this work and

we notice that the utility gap can increase even if we optimize for these welfare functions. This

is a surprising result since, unlike the influence maximization objective, these welfare functions

are designed to incorporate fairness, yet we may observe an increase in the utility gap. We now

introduce another principle which aims to address this issue. Again we focus on neighboring

solutions.

(6) Utility Gap Reduction. Let A and A′ ∈ A⋆ be two neighboring solutions with corre-

sponding utility vectors u = u(A) and u′ = u(A′). If Σc∈CNcuc ≤ Σc∈CNcu
′
c. and ∆(u) > ∆(u′)

then W (u) < W (u′).
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The utility gap reduction simply states that the welfare function should prefer the utility

vector whose total utility is at least as high as the other vector and also has smaller utility gap.

We now show that, in general, it is not possible to design a welfare function that obeys the utility

gap reduction principle along with the other principles.

Proposition 5. Let W be a welfare function that obeys principles 1-5. Then there exists an

instance of influence maximization where W does not satisfy the utility gap reduction.

Next, we show on a special class of networks, i.e., networks with disconnected communities,

the utility gap reduction principle is satisfied in all influence maximization problems.

Proposition 6. Let W be a welfare function that obeys principles 1-5. If the communities are

disconnected, then W also satisfies the utility gap reduction principle.

Propositions 5 and 6 and their proofs establish new challenges in fair influence maximization.

These challenges arise due to the coupling of the utilities as a result of the network structure

and more precisely the between-community edges. The results in Propositions 5 and 6 leave open

the following question: “In what classes of networks, there exists a welfare function that satisfies

all the 6 principles over all instances of influence maximization problems?" As an attempt to

answer this question, we empirically show that over various real and synthetic networks including

stochastic block models, there exist welfare functions that obey all of our principles. We conclude

this section by the following three remarks.

Remark 1 (Application to Other Settings). Our welfare-based framework can be theoretically

applied to different graph-based problems (e.g., facility location) but algorithmic solution is domain-

dependent. The choice of influence maximization is motivated by evidence about discrimination

studied in previous work [151, 171].

Remark 2 (Relationship between Principles and Fairness). Monotonicity ensures there is no

wastage of utilities. Symmetry enforces the decision-maker to not discriminate based on commu-

nities’ names. According to the Independence of Unconcerned Individuals, between two solutions
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(choices of influencers) only those individuals/communities whose utilities change should impact

the decision-maker’s preference. Affine Invariance is a natural requirement that the preferences

over different solutions should not change based on the choice of numeraire. Finally, the Transfer

Principle promotes solutions that are more equitable.

Remark 3 (Selecting the Inequality Aversion Parameter in Practice). In our approach, α is a

user-selected parameter that the user can vary to tune the trade-off between efficiency and fairness.

Leaving the single parameter α in the hands of the user is a benefit of our approach since the user

can inspect the solution as α is varied to select their preferred solution. Since a single parameter

must be tuned, this can be done without the need for a tailored algorithm. In particular, we

recommend that α be either selected by choosing among a moderate number of values and picking

the one with the most desirable behavior for the user or by using the bisection method. Typically,

choosing α will reduce to letting the user select how much utility gap they are willing to tolerate:

they will select the largest possible value of α for which the utility gap is acceptable.

2.5.3 Group Fairness and Welfare Maximization

The welfare principles reflect the preferences of a fair decision-maker between a pair of solutions.

Thus a welfare function that satisfies all the principles would always rank the preferred (in terms

of fairness and efficiency) solution higher. As a result, we can maximize the welfare function to

get the most preferred solution.

We show that the two classes of welfare functions Wα(u) = ΣN
i=1u

α
i /α for α < 1, α ̸= 0 and

Wα(u) = ΣN
i=1 log(ui) for α = 0 satisfy 5 of our principles. Hence as a natural notion of fairness

we can define a fair solution to be a choice of influencers with the highest welfare as defined in

the following optimization problem.

maximize
A∈A⋆

Wα(u(A)). (2.3)
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Lemma 3. In the influence maximization problem, any welfare function that satisfies principles

1-5 is monotone and submodular.

It is well-known that to maximize any monotone submodular function, there exists a greedy

algorithm with a (1− 1/e) approximation factor [136] which we can also use to solve the welfare

maximization problem.

Each choice of the inequality aversion parameter α results in a different welfare function and

hence a fairness notion. A decision-maker can directly use these welfare functions as objective of

an optimization problem and study the trade-off between fairness and total utility by varying α,

see Section 5.

2.5.4 Connection to Existing Notions of Fairness

Our framework allows for a spectrum of fairness notions as a function of α. It encompasses as

a special case leximin fairness3, a sub-class of MMF, for α → −∞. Proportional fairness [43], a

notion for resource allocation problems, is also closely connected to the welfare function for α = 0.

It is natural to ask which of the fairness principles are satisfied by the existing notions of

fairness for influence maximization. As we discussed in Section 2.4, the existing notions of fair-

ness are imposed by adding constraints to the influence maximization problem. However, our

welfare framework directly incorporates fairness into the objective. In order to facilitate the com-

parison, instead of the constrained influence maximization problems we consider an equivalent

reformulation in which we bring the constraints into the objective via the characteristic function

of the feasible set. We then have a single objective function which we can treat as the welfare

3Leximin is subclass of MMF. According to its definition, among two utility vectors, leximin prefers the one
where the worst utility is higher. If the worst utilities are equal, leximin repeats this process by comparing the
second worst utilities and so on.
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Mono. Sym. Ind. of Unconcerned Affine Inf. Transfer Gap Red.

Exact DP ✗ (Prop. 5) ✓ ✗ (Prop. 8) ✓ ✗ (Prop. 11) ✓ (Prop. 15)
Approx. DP ✗ (Prop. 6) ✓ ✗ (Prop. 8) ✗ ✗ (Prop. 11) ✗ (Prop. 15)

DC ✓ (Cor. 1) ✗ ✗ (Prop. 9) ✗ ✗ (Prop. 12) ✗ (Prop. 16)
MMF ✓ (Cor. 1) ✓ ✗ (Prop. 10) ✓ ✗ (Prop. 13) ✗ (Prop. 17)

Utilitarian ✓ (Cor. 1) ✓ ✓ ✓ ✗ (Prop. 14) ✗ (Prop. 18)
Welfare ✓ ✓ ✓ ✓ ✓ ✗ (Prop. 2)

Table 2.1: Summary of the properties of different fairness notions through the lens of welfare
principles for influence maximization.

function corresponding to the fairness constrained problem. More formally, given an influence

maximization problem and fairness constraints written as a feasible set F

max
A∈A⋆

∑
c∈C

Ncuc(A) s.t. u(A) ∈ F .

We consider the following equivalent optimization problem

max
A∈A⋆

∑
c∈C

Ncuc(A) + IF (u(A)) := max
A∈A⋆

WF (u(A)),

in which IF (u) is equal to 0 if u ∈ F and −∞ otherwise. Using this new formulation, we can

now examine each of the existing notions of fairness though the lens of the welfare principles.

Given the new interpretation, to show that a fairness notion does not satisfy a specific principle,

it suffices to show there exist solutions A,A′ ∈ A⋆ and corresponding utility vectors u = u(A)

and u′ = u(A′) such that the principle prefers u over u′ but WF (u) < WF (u
′). The results are

summarized in Table 2.1 where in addition to comparing with the previous notions introduced in

Section 2.4, we compare with the utilitarian notion i.e., Problem (2.1). We provide formal proofs

for each entry of Table 2.1 in Appendix B.

We observe that none of the previously defined notions of fairness for influence maximization

satisfies all of our principles and each existing notion violates at least 3 out of 6 principles. We

point out that exact DP is the only notion that satisfies the utility gap reduction. However, this
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comes at a cost as enforcing exact DP may result in significant reduction in total utility in the

fair solution compared to the optimal unconstrained solution [54].

We evaluate our approach in terms of both the total utility or spread of influence (to account

for efficiency) and utility gap (to account for fairness). We show by changing the inequality aver-

sion parameter, we can effectively trade-off efficiency with fairness. As baselines, we compare with

DC and MMF. To the best our knowledge, there is no prior work that handles DP constraints

over the utilities. We follow the approach of [175] for both problems and view these problems as a

multi-objective submodular optimization with utility of each each community being a separate ob-

jective. They propose an algorithm and implementation with asymptotic (1−1/e) approximation

guarantee which we also utilize here. We use Price of Fairness (PoF), defined as the percentage

loss in the total influence spread as a measure of efficiency. Precisely, PoF := 1−OPTfair/OPTIM

in which OPTfair and OPTIM are the the total influence spread, with and without fairness. Hence

PoF∈ [0, 1] and smaller values are more desirable. The normalization in PoF allows for a mean-

ingful comparison between networks with different sizes and budgets as well as between different

notions of fairness. In the PoF calculations, we utilize the generic greedy algorithm [105] to

compute OPTIM. To account for fairness, we compare the solutions in terms of the utility gap.

Analogous measures are widely used in fairness literature [85] and more recently in graph-based

problems [72, 171]. We also note that our framework ranks solutions based on their welfare and

does not directly optimize utility gap, as such our evaluation metric of fairness does not favor any

particular approach.

We perform experiments on both synthetic and real networks. We study two applications:

community preparedness against landslide incidents and suicide prevention among homeless youth.

We discuss the latter in Appendix B. In the synthetic experiments, we use the stochastic block

model (SBM) networks, a widely used model for networks with community structure [70]. In SBM

networks, vertices are partitioned into disjoint communities. Within each community c, an edge

between two vertices is present independently with probability qc. Between any two vertices in
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communities c and c′, an edge exists independently with probability qcc′ and typically qc > qcc′

to capture homophily [125]. SBM captures the community structure of social networks [81]. We

report the average results over 20 random instances and set p = 0.25 in all experiments.

Landslide Risk Management in Sitka, Alaska. Sitka, Alaska is subject to frequent landslide

incidents. In order to improve communities’ preparedness, an effective approach is to instruct

people on how to protect themselves before and during landslide incidents. Sitka has a population

of more than 8000 and instructing everyone is not feasible. Our goal is to select a limited set of

individuals as peer-leaders to spread information to the rest of the city. The Sitka population is

diverse including different age groups, political views, seasonal and stable residents where each

person can belong to multiple groups. These groups differ in their degree of connectedness. This

makes it harder for some groups to receive the intended information and also impacts the cost of

imposing fairness.

Since collecting the social network data for the entire city is cumbersome, we assume a SBM

network and use in-person semi-structured interview data from 2018-2020 with members of Sitka

to estimate the SBM parameters. Using the interview responses in conjunction with the voter

lists, we identified 5940 individuals belonging to 16 distinct communities based on the intersection

of age groups, political views, arrival time to Sitka (to distinguish between stable and transient

individuals). The size of the communities range from 112 (stable, democrat and 65+ years of age)

to 693 (republican, transient fishing community, age 30-65). See Appendix B for details on the

estimation of network parameters.

2.6 Computational Results

Figure 2.2 summarizes results across different budget values K ranging from 2% to 10% of the

network size N for our framework (different α values) as well as the baselines. In the left panel,

we observe that as α decreases, our welfare-based framework further reduces the utility gap,
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Figure 2.2: Left and right panels: utility gap and PoF for different K and α values for our
framework and baselines.

achieving lower gap than DC and competitive gap as MMF. As we noted in Section 2.5.4, our

framework recovers leximin (which has stronger guarantees than MMF) as α → −∞, though we

show experimentally that this is achieved with moderate values of α. Overall, utility gap shows

an increasing trend with budget, however the sensitivity to budget decreases when more strict

fairness requirements are in place, e.g. in MMF and α = −9.0. From the right panel, PoF varies

significantly across different approaches and budget values surpassing 40% for MMF. This is due

to the stringent requirement of MMF to raise the utility of the worst-off as much as possible.

Same holds true for lower values of α as they exhibit higher aversion to inequality. The results

also indicate that PoF decreases as K grows which captures the intuition that fairness becomes

less costly when resources are in greater supply. Resource scarcity is true in many practical

applications, including the landslide risk management domain which makes it crucial for decision-

makers to be able to study different fairness-efficiency trade-offs to come up with the most effective
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Figure 2.3: PoF vs. utility gap trade-off curves. Each line corresponds to a different budget K
across different α values.
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Figure 2.4: Utility gap and PoF for various levels q3. All results are compared across different
values of α and the baselines.

plan. Figure 2.3 depicts such trade-off curves where each line corresponds to a different budget

value across the range of α. Previous work only allows a decision-maker to choose among a very

limited set of fairness notions regardless of the application requirements. Here, we show that

our framework allows one to choose α to meaningfully study the PoF-utility gap trade-offs. For

example, given a fixed budget and a tolerance on utility gap, one can choose an α with the lowest

PoF. We now investigate the effect of relative connectedness. We provide the effect of relative

community size in Appendix A.

Relative Connectedness. We sample SBM networks consisting of 3 communities each of

size 100 where communities differ in their degree of connectedness. We set q1 = 0.06, q2 =

0.03, q3 = 0.0 to obtain three communities with high, mid and low relative connectedness. We

choose these values to reflect asymmetry in the structure of different communities which mirrors

real world scenarios since not every community is equally connected. We set between-community

edge probabilities qcc′ to 0.005 for all c and c′ and K = 0.1N . We gradually increase q3 from 0.0

to 0.06. Results are summarized in Figure 2.4, where each group of bars correspond to a different

approach. We observe as q3 increases utility gap and PoF decrease until they reach a minimum

around at around q3 = 0.03. From this point, the trend reverses. This U-shaped behavior is

due to structural changes in network. More precisely, for q3 < 0.03 we are in the high-mid-low

connectedness regime for the three groups, where the third community receives the minimum

utility. As a result, as q3 increases it becomes more favorable to choose more influencer vertices in
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this community which in turn reduces the utility gap. For q3 > 0.03, the second community will

be become the new worst-off community due its lowest connectedness. Hence, further increase

in q3 causes more separation in connectedness and we see previous behavior in reverse. Thus,

by further increasing q3, communities 1 and 3 receive more and more influencer vertices. This

behavior translates to PoF as the relative connectedness of communities impacts how hard it is

to achieve a desired level of utility gap. Finally, we see that the U-shaped behavior is skewed, i.e.,

we observe higher gap and PoF in lower range of q3 which is due to higher gap in connectedness

of communities. We can also compare the effect of relative connectedness and community size

(see Appendix B).

We observe that connectedness has a more significant impact on PoF (up to 25%) compared

to community size (less than 4%). In other words, when communities are structurally different it

is more costly to impose fairness. This is an insightful result given that in different applications

we may encounter different populations with structurally different networks. Utility gap on the

other hand is affected by both size and connectedness. Finally while our theory indicates that in

the network setting, no welfare function can satisfy all principles including utility gap reduction

over all instances of the influence maximization, we observe that our class of welfare functions

satisfies all of the desiderata on the class of networks that we empirically study. Our theoretical

results showed this for a special case of networks with disconnected communities. In particular,

we see higher PoF is accompanied by lower utility gap which complies with utility gap reduction

principle.

2.7 Conclusion and Broader Impact

As the empirical evidence highlighting ethical side effects of algorithmic decision-making is grow-

ing [8, 128], the nascent field of algorithmic fairness has also witnessed a significant growth. It is

52



well-established by this point that there is no universally agreed-upon notion of fairness, as fair-

ness concerns vary from one domain to another [135, 27]. The need for different fairness notions

can also be explained by theoretical studies that show that different fairness definitions are often

in conflict with each other [110, 51, 74]. To this end, most of the literature on algorithmic fairness

proposes different fairness notions motivated by different ethical concerns. A major drawback

of this approach is the difficulty of comparing these methods against each other in a systematic

manner to choose an appropriate notion for the domain of interest. Instead of following this

trend, we propose a unifying framework controlled by a single parameter that can be used by

a decision-maker to systematically compare different fairness measures which typically result in

different (and possibly also problem-dependent) trade-offs. Our framework also accounts for the

social network structure while designing fairness notions – a consideration that is mainly over-

looked in the past. Given these two contributions, it is perceivable that our approach can be used

in many of the public health interventions such as suicide, HIV or Tuberculous prevention that

rely on social networks. This way, the decisions-makers can compare a menu of fairness-utility

trade-offs proposed by our approach and decide which one of these trade-offs are more desirable

without a need to understand the underlying mathematical details that are used in deriving these

trade-offs.

There are crucial considerations when deploying our system in practice. First, cardinal welfare

is one particular way of formalizing fairness considerations. This by no means implies that other

approaches for fairness e.g. equality enforcing interventions should be completely ignored. Second,

we have assumed that the decision-maker has the full knowledge of the network as well as possibly

protected attributes of the individuals which can be used to define communities. Third, while

our experimental evaluation is based on utilizing a greedy algorithm, it is conceivable that this

greedy approximation can create complications by imposing undesirable biases that we have not

accounted for. Intuitively (and as we have seen in our experiments) the extreme of inequality
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aversion (α → −∞) can be used as a proxy for pure equality. However, the last two concerns

require more care and we leave the study of such questions as future work.
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Part II

Algorithmic Fairness under Observational Data
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Chapter 3

Fair and Efficient Housing Allocation Policy Design
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3.1 Introduction

We study the problem of designing policies to effectively match heterogeneous individuals to

scarce resources of different types. We consider the case where both individuals and resources

arrive stochastically over time. Upon arrival, each individual is assigned to a queue where they

wait to be matched to a resource. This problem arises in several public systems such as those

providing social services, posing unique challenges at the intersection of efficiency and fairness.

In particular, the joint characteristics of individuals and their matched resources determine the

effectiveness of an allocation policy, making it crucial to match individuals with the right type

of resource. Furthermore, when a resource becomes available, a decision-maker should decide

whom among the individuals waiting in various queues should receive the resource which impacts

the wait time of different individuals. In addition, since there are insufficient resources to meet

demand, there are inherent fairness considerations for designing such policies.

We are particularly motivated by the problem of allocating housing resources among indi-

viduals experiencing homelessness. According to the U.S. Department of Housing and Urban

Development (HUD), more than 580,000 people experience homelessness on a given night [87].

The Voices of Youth Count study found youth homelessness has reached a concerning prevalence

level in the United States; one in 30 teens (13 to 17) and one in 10 young adults (18 to 25)

experience at least one night of homelessness within a 12-month period, amounting to 4.2 million

persons a year [133]. Housing interventions are widely considered as the key solution to address

homelessness [139]. In the U.S., the government funds programs that assist homeless using dif-

ferent forms of housing interventions and services [177]. The HMIS database collects information

on the provision of these services.

Unfortunately, the number of homeless individuals in the U.S. far exceeds the available re-

sources which necessitates strategic allocation to maximize the intervention’s effectiveness. Many
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Figure 3.1: NST-recommended resource allocation policy utilized by housing allocation agencies
in the homelessness context. The policy is in the form of a resource eligibility structure. According
to this figure, individuals with score eight and above qualify for PSH, score 4 to 7 are assigned to
the RRH wait list and finally individuals who score below 4 are not assigned to any of the housing
interventions.

communities have attempted to address this problem by creating coordinated community re-

sponses, typically referred to as Coordinated Entry Systems (CES). In such systems, most agen-

cies within a community pool their housing resources in a centralized system called a Continuum

of Care (CoC). A CoC is a regional or local planning body that coordinates housing and services

funding—primarily from HUD—for people experiencing homelessness. Individuals in a given CoC

who seek housing are first assessed for eligibility and vulnerability and those identified as having

the greatest need are matched to appropriate housing resources [157]. For example, in the context

of youth homelessness, the most widely adopted tool for assessing vulnerability is the Transition

Age Youth-Vulnerability Index-Service Prioritization Decision Assistance Tool (TAY-VI-SPDAT):

Next Step Tool (NST), which was developed by OrgCode Consulting, Corporation for Supportive

Housing (CSH), Community Solutions, and Eric Rice. OrgCode claims that hundreds of CoC’s in

the USA, Canada and Australia have adopted this tool [140]. After assessment, each individual

receives a vulnerability score ranging from 0 to 17. One of the main challenges that CoC’s face is

how to use the information about individuals to decide what housing assistance programs should

be available to a particular homeless individual. In many communities, based on the recommen-

dations provided in the NST tool documentation, individuals who score 8 to 17 are considered as

“high risk” and are prioritized for resource-intensive housing programs or Permanent Supportive

Housing (PSH). Those who score in the 4-7 range are typically assigned to short-term rental sub-

sidy programs or Rapid-ReHousing (RRH) and those with score below 4 are eligible for services
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that meet basic needs which we refer to as Service Only (SO) [158]. Figure 3.1 depicts how the

individuals are matched to resources according to the status-quo policy.

The aforementioned policy can be viewed as a resource eligibility structure as from the onset,

it determines the resources an individual is eligible for. Such policies have the advantage of being

interpretable, i.e., it is easy to explain why a particular allocation is made. Earlier work shows

that most communities follow the policy recommendations when assigning housing [158]. However,

controversy has surrounded the use of these cut scores and as of December 2020, OrgCode has

called for new approaches to using the data collected by HMIS [141]. There is also an overwhelming

desire on the part of HUD to design systematic and data-driven housing policies, including the

design of the cut scores and the queues that they induce [177]. Currently, the cut scores are

not tied to the treatment effect of interventions or the relative arrival rate of individuals and

resources in the respective queues. This is problematic as it is not evidently clear that assigning

high-scoring and mid-scoring individuals to particular housing interventions, such as PSH or RRH,

actually increases their chances of becoming stably housed. Additionally, there may not be enough

resources to satisfy the needs of all individuals matched to a particular resource, resulting in long

wait times. Prolonged homelessness may in turn increase the chances of exposure to violence,

substance use, etc., or individuals dropping out of the system.

In particular, OrgCode and others have called for a new equity focus to how vulnerability

tools are linked to housing allocation [141, 127]. Despite recent efforts to understand and mitigate

disparities in homelessness, current system suffers from a significant gap in the prevalence of

homelessness across different groups. For example, studies show that most racial minority groups

experience homelessness at higher rates than Whites [78]. Also, recent work has revealed that

PSH outcomes are worse for Black clients in Los Angeles [127] and based on the same HMIS

data used in present study, Black, Latinx, and LGBQ youth have been shown to experience worse

housing outcomes [89]. Addressing these disparities requires an understanding of the distribution
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of the individuals vulnerability to homelessness, the heterogeneity in the treatment affect and the

associations with protected attributes such as race, gender, or age.

In this work, we build on the literature on causal inference and queuing theory and we propose

a methodology to use historical data about the waitlisted individuals and their allocated resources

to evaluate and optimize new resource allocation policies that take policy effectiveness, fairness

and wait time into account. We make the following contributions:

• We model the policy optimization problem as a multi-class multi-server queuing system

between heterogeneous individuals and resources that arrive over time. We extend the

literature on queuing theory by proposing a data-driven methodology to construct the model

from observational data. Specifically, we use tools from modern causal inference to learn

the treatment effect of the interventions from data and construct the queues by grouping

individuals that have similar average treatment effects.

• We propose interpretable policies that take the form of a resource eligibility structure,

encoding the resource types that serve each queue. We provide an MIO formulation to

optimize the eligibility structure that incorporates flexibly defined fairness considerations or

other linear domain-specific constraints. The MIO maximizes the policy effectiveness and

guarantees minimum wait time.

• Using HMIS data, we conduct a case study to demonstrate the effectiveness of our approach.

Our results indicate superior performance along policy effectiveness, fairness and wait time.

Precisely, we are able to obtain wait time as low as a fully FCFS policy while improving

the rate of exit from homelessness for traditionally underserved or vulnerable groups (7%

for the Black individuals and 15% higher for youth below 17 years old) and overall.

The remainder of this chapter is organized as follows. In Section 3.2, we review the related

literature. In Section 3.3, we introduce the policy optimization problem. In Section 3.4, we propose

our data-driven methodology for solving the policy optimization problem. Finally, we summarize
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our numerical experiments and present a case study using HMIS data on youth experiencing

homelessness in Section 3.5. Proofs and detailed numerical results are provided in the Appendix C.

3.2 Related Work

This work is related to several streams of literature which we review. Specifically, we cover queuing

theory as the basis of our modelling framework. We also position our methodology within the

literature on data-driven policy optimization and causal inference. We conclude by highlighting

recent works on fairness in resource allocation.

A large number of scarce resource allocation problems give rise to one-sided queuing models.

In these models, resources are allocated upon arrival, whereas individuals queue before being

matched. Examples are organ matching [14] and public housing assignment [103]. One stream

of literature studies dynamic matching policies to find asymptotically optimal scheduling policies

under conventional heavy traffic conditions [10, 121]. Another stream focuses on the system

behavior under FCFS service discipline aiming to identify conditions that ensure the stability

of the queuing system and characterize the steady-state matching flow rates, i.e., the average

rate of individuals of a given queue (or customer class) that are served by a particular resource

(server) [45, 67]. These works only focus on minimizing delay and do not explicitly model the

heterogeneous service value among the customers. Recently, [60] studied one-sided queuing system

where resources are allocated to the customer with the highest score (or index), which is the sum

of the customer’s waiting score and matching score. The authors derive a closed-form index that

optimizes the steady-state performance subject to specific fairness considerations. Their proposed

fairness metric measures the variance in the likelihood of getting service before abandoning the

queue. Contrary to their model, we consider FCFS policies subject to resource eligibility structures

which we optimize over. Our model is based on the policies currently being implemented for

housing allocation among homeless individuals and are interpretable by design. In addition, our
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model allows for a more general class of fairness constrained commonly used in practice including

fairness in allocation and outcome.

Our approach builds upon [3], in which the authors study the problem of designing a matching

topology between customer classes and servers under a FCFS service discipline. They focus on

finding matching topologies that minimize the customers’ waiting time and maximize matching

rewards obtained by pairing customers and servers. The authors characterize the average steady-

state wait time across all customer classes in terms of the structure of the matching model, under

heavy-traffic condition. They propose a quadratic program (QP) to compute the steady-state

matching flows between customers and servers and prove the conditions under which the approx-

imation is exact. We build on the theoretical results in [3] to design resource eligibility structures

that match heterogeneous individuals and resources in the homelessness setting. Contrary to

the model in [3], we do not assume that the queues or the matching rewards are given a priori.

Instead, we propose to use observational data from historical policy to learn an appropriate group-

ing of individuals into distinct queues, estimate the matching rewards, and evaluate the resulting

policies.

Another stream of literature focuses on designing data-driven policies, where fairness consid-

erations have also received significant attention due to implicit or explicit biases that models or

the data may exhibit [34, 59, 148, 106]. In [34], the authors propose a data-driven model for

learning scoring policies for kidney allocation that matches organs at their time of procurement

to available patients. Their approach satisfies linear fairness constraints approximately and does

not provide any guarantees for wait time. In addition, they take as input a model for the match-

ing rewards (i.e., life years from transplant)to optimize the scoring policy. In [13], the authors

propose a data-driven mixed integer program with linear fairness constraints to solve a similar

resource allocation which provides an exact, rather than an approximate, formulation. They also

give an approximate solution to achieve faster run-time. We consider a class policies in the form of

matching topologies that is different from scoring rules and is more closely related to the policies
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implemented in practice. Such policies offer more interpretability as individuals know what re-

sources they are eligible for from the onset. Several works have considered interpretable functional

forms in policy design. For example, in [31, 98], the authors consider decision trees and develop

techniques to obtain optimal trees from observational data. Their approach is purely data-driven

and do not allow for explicit modelling of the arrival of resources, individuals which impact wait

time. In the homelessness setting, our work is closely related to [114] which proposes a resource

allocation mechanism to match homeless households to resources based on the probability of sys-

tem re-entry. In this work, the authors provide a static formulation of the problem which requires

frequent re-optimization and does not take the waiting time into account. In [137], the authors

propose a fairness criterion that prioritizes those who benefit the most from a resource, as opposed

to those who are the neediest and study the price of fairness under different fairness definitions.

Similar to [114], their formulation is static and does not yield a policy to allocate resources in

dynamic environments.

3.3 Housing Allocation as a Queuing System

3.3.1 Preliminaries

We model the resource allocation system as an infinite stream of heterogeneous individuals and

resources that arrive over time. Each individual is characterized by a (random) feature vector

X ∈ X ⊆ Rn and receives an intervention R from a finite set of treatments indexed in the set R.

We note that R may include “no intervention” or minimal interventions such as SO in the housing

allocation setting. Using the potential outcomes framework [162], each individual has a vector of

potential outcomes Y (r) ∈ Y ⊆ R ∀r ∈ R, where Y (r) is an individual’s outcome when matched

to resource r.

We assume having access to N historical observations D := {(Xi, Ri, Yi)}Ni=1, generated by

the deployed policy, where Xi ∈ X denotes the feature vector of the ith observation, Ri ∈ R is
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the resource assigned to it and Yi = Yi(Ri) is the observed outcome, i.e., the outcome under the

resource received. A (stochastic) policy π(r|x) : X ×R → [0, 1] maps features x to the probability

of receiving resource r. We define the value of a policy as the expected outcome when the policy

is implemented, i.e., V (π) := E[
∑
r∈R

π(r|X)Y (r)]. A major challenge in evaluating and optimizing

policies is that we cannot observe the counterfactual outcomes Yi(r), r ∈ R, r ̸= Ri of resources

that were not received by data point i. Hence, we need to make further assumptions to identify

policy values from historical data. In Section 3.4, we elaborate on these assumptions and propose

our methodology for evaluating and optimizing policies from data.

We model the system as a multi-class multi-server (MCMS) queuing system where a set of

resources R serve a finite set of individual queues indexed in the set Q. Upon arrival, individ-

uals are assigned to different queues based on their feature vector. For example, in the housing

allocation setting and according to the recommended policy the assignment is based on the vul-

nerability score. We use p : X → Q to denote the function that maps the feature vector to a

queue that the individual will join. We refer to p as the partitioning function (as it partitions

X and assigns each subset to a queue) and note that it is unknown a priori. In this work, we

consider partitioning functions in the form of a binary trees similar to classification trees, due

to their interpretability [13]. We assume that individuals arrive according to independent Pois-

son processes and that inter-arrival time of resources follows an exponential distribution. These

are common assumptions in queuing theory for modeling arrivals. We use λ := (λ1, . . . , λ|Q|)

and µ := (µ1, . . . , µ|R|) to denote the vector of arrival rates of individuals and resources, respec-

tively. We define λQ :=
∑
q∈Q

λq and µR :=
∑
r∈R

µr as the cumulative arrival rates of individuals

and resources, respectively. Without loss of generality, we assume that λq > 0 ∀q ∈ Q and

µr > 0 ∀r ∈ R.
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3.3.2 Matching Policy

Once a new resource becomes available, it is allocated according to a resource eligibility structure

that determines what queues are served by any particular resource. The resource eligibility struc-

ture can be equivalently represented as a matching topology M := [Mqr] ∈ {0, 1}|Q|×|R|, where

Mqr = 1 indicates that individuals in queue q is eligible for resource r. Resources are assigned

to queues in an FCFS fashion subject to matching topology M . For a partitioning function p

and matching topology M , we denote the allocation policy by πp,M (r|x). We concern ourselves

with the long-term steady state of the system. Proposition 7 gives the necessary and sufficient

conditions to arrive at a steady-state.

Proposition 7 ([2], Theorem 2.1). Given the MCMS system defined through (Q,R,λ,µ,M),

under the FCFS service discipline matching M admits a steady state if and only if the following

condition is satisfied:

µR −
∑
r∈R

∑
q∈QR(M)

λq > 0 ∀R ⊆ R.

The left-hand side is the cumulative arrival rate of resources in R in excess of the cumulative

arrival rate of all the queues in QR, where QR is the set of queues that are only eligible for

resources in R, i.e., QR = {q ∈ Q :
∑

r∈R\R

Mqr = 0}.

According to the above result, we can define the set of admissible matching topologies as those

that satisfy the inequality in Proposition 7. In the housing allocation problem, we assume that

SO resources are abundant, i.e., µR − λQ > 0. As a result, there exists at least one admissi-

ble matching: the fully connected matching topology Mqr = 1 ∀q ∈ Q, r ∈ R. The abundance

assumption is necessary in order to avoid overloaded queues. However, in practice housing re-

sources are strictly preferred. As a result, we propose to study the system under the so-called

heavy traffic regime, where the system is loaded very close to its capacity and we assume that

the system utilization parameter ρ := µR/λQ approaches 1, i.e., ρ → 1. In general, we assume

65



that λ and µ are such that λQ = ρµR. This assumption will additionally make the analyti-

cal study of the matching system more tractable. In particular, in [3], the authors propose a

quadratic program to approximate the exact steady-state flows of the stochastic FCFS matching

system under heavy traffic conditions. They enforce the steady-state flows in an optimization

model to find the optimal matching topology using KKT optimality conditions. We adopt the

same set of constraints in the present work. We discuss in more detail when we present the fi-

nal optimization formulation. We let F := [Fqr] ∈ R|Q|×|R|
+ denote the steady-state flow, where

Mqr = 0 ⇒ Fqr = 0. Given a partitioning function p, the policy associated with a matching

topology M is equal to πp,M (r|x) = Fqr/
∑
r∈R

Fqr = Fqr/λq, in which q = p(x) and the second

inequality follows from the flow balance constraints. In Proposition 8 we show how the policy

value can be written using the matching model parameters and treatment effect of different in-

terventions. We define the conditional average treatment effect (CATE) of resource r and queue

q as τqr := E[Y (r) − Y (1)|P (X) = q] ∀r ∈ R, q ∈ Q, in which r = 1 is the baseline intervention.

In many applications, the baseline intervention corresponds to “no-intervention” (also referred to

as the control group). In the housing allocation context, we set r = 1 to be the SO intervention.

Proposition 8. Given a partitioning function p, an MCMS model (Q,R,λ,µ,M), and the

steady-state FCFS flow F under FCFS discipline, the value of the induced policy πp,M is equal

to:

V (πp,M ) =
1

λQ

∑
q∈Q

∑
r∈R

Fqrτqr + C,

where C is a constant that depends on the expected outcome under the baseline intervention.

3.3.3 Policy Optimization

We now introduce the policy optimization problem under the assumption that the joint distribu-

tion of X, Y (r), r ∈ R as well as the partitioning function p is known. In Section 3.4, we propose a
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methodology to construct p. Furthermore, we describe how we can use historical data to optimize

new policies.

P(p) := max
M∈M

V (πp,M ). (3.1)

In the above formulation, M is the set of feasible matching topologies. In addition to the con-

straints that impose steady-state flow, we incorporate fairness and wait time constraints in the

set M which we describe next.

Fairness In this work, we focus on group-based notions of fairness which have been widely

studied in recent years in various data-driven decision making settings [151, 13, 137, 34]. Formally,

we let G be a random variable describing the group that an individual belongs to, taking values

in G. For example, G can correspond to protected features such as race, gender or age. It is also

possible to define fairness with respect to other features, such as vulnerability score in the housing

allocation setting. We give several examples to which our framework applies.

Example 1 (Maximin Fair in Allocation). Motivated by Rawls theory of social justice [156],

maximin fairness aims to help the worst-off group as much as possible. Formally, the fairness

constraints can be written as ∑
q∈Qg

Fqr ≥ w ∀g ∈ G, r ∈ R,

where w is the minimum acceptable flow across groups and Qg ⊆ Q is a subset of queues whose

individuals belong to G = g. If queues contain individuals with different values of g, one should

separate them by creating multiple queues with unique g. By increasing the parameter w, one is

imposing more strict fairness requirements. This parameter can be used to control the trade-off

between fairness and policy value. It can also be set to the highest value for which the constraint

is feasible.
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Example 2 (Group-based Parity in Allocation). Parity-based fairness notions strive for equal

outcomes across groups.

∣∣∣∣∣∣
∑
q∈Qg

Fqr −
∑

q∈Qg′

Fqr

∣∣∣∣∣∣ ≤ ϵ ∀g, g′ ∈ G, r ∈ R.

In words, for every resource the difference between the cumulative flow between any pair of groups

should be at most ϵ, where ϵ can be used to control the trade-off between fairness and policy value.

Example 3 (Maximin Fair in Outcome). For every group, the policy value should be at least w.

1

λQg

∑
q∈Qg

∑
r∈R

Fqrτqr ≥ w ∀g ∈ G.

Example 4 (Group-based Parity in Outcome). The difference between the policy value for any

pair of groups is at most ϵ.

∣∣∣∣∣∣ 1

λQg

∑
q∈Qg

∑
r∈R

Fqrτqr −
1

λQg′

∑
q∈Q′

g

∑
r∈R

Fqrτqr

∣∣∣∣∣∣ ≤ ϵ ∀g, g′ ∈ G.

In the experiments, we focus on fairness in outcome due to treatment effect heterogeneity. In

other words, it is important to match individuals with the right type of resource, rather than

ensuring all groups have the same chance of receiving any particular resource. Further, we adopt

maximin fairness which guarantees Pareto optimal policies [148].

Wait Time Average wait time is dependent on the structure of the matching topology. For

example, minimum average wait time is attainable in a fully FCFS policy where Mqr = 1 ∀q ∈

Q, r ∈ R. In [3], the authors characterize the general structural properties that impact average

wait time. In particular, they show that under the heavy traffic condition, a matching system

can be partitioned into a collection of complete resource pooling (CRP) subsystems that operate

“almost” independently of each other. A key property of this partitioning is that individuals
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that belong to the same CRP component experience the same average steady-state wait time.

Furthermore, the average wait time is tied to the number of CRPs of a matching topology, where

a single CRP achieves minimum average wait time. In [3], the authors introduce necessary and

sufficient constraints to ensure that the matching topology M induces a single CRP component.

We adopt these constraints in order to achieve minimum wait time which we discuss next.
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3.3.4 Optimization Formulation

Suppose the joint distribution of X, Y (r) ∀r ∈ R is known. Given a partitioning function p to

assign individuals to queues, problem (3.1) can be solved via the MIO below.

max
∑
q∈Q

∑
r∈R

τqrfqr (3.2a)

s.t. fqr, νqr ∈ R+, γr, θq ∈ R ∀q ∈ Q, r ∈ R (3.2b)

Mqr, zqr ∈ {0, 1} ∀q ∈ Q, r ∈ R (3.2c)

g(k)qr ∈ R+ ∀q, k ∈ Q, r ∈ R (3.2d)∑
q∈Q

fqr = µr ∀r ∈ R (3.2e)

∑
r∈R

fqr = λq ∀q ∈ Q (3.2f)

fqr ≤ λqµr (θq + γr + νqr) + Z(1−mqr) ∀q ∈ Q, r ∈ R (3.2g)

fqr ≥ λqµr (θq + γr + νqr)− Z(1−mqr) ∀q ∈ Q, r ∈ R (3.2h)

fqr ≤ Zmqr ∀q ∈ Q, r ∈ R (3.2i)

fqr ≤ Zzqr ∀q ∈ Q, r ∈ R (3.2j)

νqr ≤ (|Q|+ |R|+ 1)W (1− zqr) ∀q ∈ Q, r ∈ R (3.2k)∑
q∈C

g(k)qr = µr ∀r ∈ R, k ∈ Q (3.2l)

∑
r∈R

h(k)
qr = λq −

δ

|Q| − 1
∀q ∈ Q \ {k}, k ∈ Q (3.2m)

∑
r∈R

g(k)qr ≤ Zmqr ∀q, k ∈ Q, r ∈ R (3.2n)

∑
r∈R

g(k)qr = λk + δ ∀q, k ∈ Q (3.2o)

F ∈ F . (3.2p)
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In this formulation, δ :=

∏
q∈Q

vq
∏
r∈R

vr

−1

and
wq

vq
= λq,

wr

vr
= µr are rational number

representations. The constants W and Z are defined as: W := 1/2max{max
q∈Q

1/λq,max
r∈R

1/µr},

and Z := maxq∈Q λq maxr∈R µr

(∑
q∈Q 1/λq +

∑
r∈R 1/µr + (|Q|+ |R|+ 1)2W

)
. Constraints

(3.2e) and (3.2f) are the flow balance constraints. Constants W,Z ensure that constraints (3.2g)-

(3.2k) impose the KKT conditions of the quadratic program that approximates steady-state-flow

for a matching topology M . Constraints (3.2l)-(3.2o) enforce a single CRP component to ensure

minimum wait time. Finally, constraint (3.2p) is a fairness constraint where we can use any of

the aforementioned examples. In order to solve problem (3.2), there are several parameters that

must be estimated. In particular, we need to estimate τqr and λ which depend of p, as well as µ.

3.4 Solution Approach

We first partition X and then estimate CATE in each subset of the partition. We propose to use

causal trees to achieve both tasks simultaneously [183]. Causal trees estimate CATE of binary

interventions by partitioning the feature space into sub-populations that differ in the magnitude

of their treatment effects. The method is based on regression trees, modified to estimate the

goodness-of-fit of treatment effects. A key aspect of using causal trees for partitioning is that

the cut points on features are such that the treatment effect variance within each leaf node

is minimized. In other words, individuals who are similar in the treatment effect are grouped

together in a leaf node. This results in queues that are tied to the treatment effect of resources

which will result in improved policy value (see Section 3.5).

3.4.1 Assumptions

Causal trees rely on several key assumptions which are standard in causal inference for treatment

effect estimation [88]. These assumptions are usually discussed for the case of binary treatments.

Below, we provide a generalized form of the assumptions for multiple treatments.
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Assumption 4 (Stable Unit Treatment Value Assumption (SUTVA)). The treatment that one

unit (individual) receives does not change the potential outcomes of other units.

Assumption 5 (Consistency). The observed outcome agrees with the potential outcome under the

treatment received.

The implication of this assumption is that there are no different forms of each treatment which

lead to different potential outcomes. In the housing allocation setting, this requires that there is

only one version of PSH, RRH and SO.

Assumption 6 (Positivity). For all feature values, the probability of receiving any form of treat-

ment is strictly positive, i.e.,

P(R = r|X = x) > 0 ∀r ∈ R x ∈ X .

Th positivity assumption states that any individual should have a positive probability of

receiving any treatment. Otherwise, there is no information about the distribution of outcome

under some treatments and we will not be able to make inferences about it. In Section 3.5, we

discuss the implications of this assumption in the context of HMIS data.

Assumption 7 (Conditional Exchangeability). Individuals receiving a treatment should be con-

sidered exchangeable, with respect to potential outcomes Y (r), r ∈ R, with those not receiving it

and vice versa. Mathematically,

Y (1), . . . , Y (|R|) ⊥ R|X = x ∀x ∈ X .

Conditional exchangeability means that there are no unmeasured confounders that are a com-

mon cause of both treatment and outcomes. If unmeasured confounders exist, it is impossible to

accurately estimate the causal effects. In experimental settings, conditional exchangeability is ob-

tained through stratified randomization. In observational settings, however, a decision-maker only
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1

Score < 11

Score < 7

Score < 9

Yes No Yes No

Yes No

PSH RRH

Figure 3.2: Example partitioning by sample causal trees for PSH and RRH interventions.

relies on passive observations. As a result, in order to increase the plausibility of this assumption,

researchers typically include as many features as possible in X to ensure that as many confounders

as possible between treatment and outcome are accounted for. In the housing allocation setting,

the HMIS database contains a rich set of features (54 features) associated with different risk factors

for homelessness which we use in order to obtain the treatment effect estimates. In Section 3.6,

we discuss the consequences of violating the above assumptions.

3.4.2 Building the Partitioning Function

Next, we describe our approach for estimating CATE. We first consider a simple case with binary

treatments, i.e., |R| = 2 as causal trees work primarily for binary treatments. After training the

causal tree using the data on a pair of treatments, the leaves induce a partition on the feature

space X . Hence, we can view the causal tree as the partitioning function p where each individual

is uniquely mapped to a leaf node, i.e., a queue.

Extending to the case of |R| > 2 is non-trivial. Assuming r = 1 is the baseline intervention,

we construct |R| − 1 separate causal trees to estimate CATE for r ∈ R \ {1}. We denote the

resulting causal trees or partitioning functions pr : X → Q ∀r ∈ R \ {1}. We define Xr(q) =

{x ∈ X : pr(x) = q} ∀r ∈ R \ {1}, q ∈ Q as the set of all individuals who belong to queue q

according to partitioning function pr. Also, let qr = pr(x). In order to aggregate the individual

partitioning functions to obtain a unified partition on X , we consider the intersections of Xr(q)
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created by each tree. We define subsets X (q1, . . . , q|R|−1) =

|R|−1⋂
r=1

Xr(qr) for all combinations

of qr ∈ Q. We can view X (q1, . . . , q|R|−1) as a new (finer) partition on X . We illustrate with

an example using the housing allocation setting. Suppose we have constructed two causal trees

for PSH and RRH according to Figure 3.2 such that PSH tree splits the vulnerability score into

intervals of [0, 6], [7, 10], [11, 17] and RRH creates [0, 8], [9, 17] subsets. According to our procedure,

the final queues are constructed using the intersection of these subsets. In other words, we obtain

[0, 6], [7, 8], [9, 10], [11, 17] which corresponds to four queues. We note that the granularity of the

partition can be controlled through the tree depth or the minimum allowable number of data

points in each leaf, both of which are adjustable parameters.

Finally, in order to estimate τqr, we should avoid using the estimates from each individual tree.

The reason is that each tree estimates E[Y (r) − Y (1)|p(X) = q,R ∈ {1, r}] ∀r ∈ R \ {1}. That

is, a subset of the data associated with a pair of treatments is used to build each tree. Therefore,

τqr values are not generalizable to the entire population and need to be re-evaluated over all

data points that belong to a subset. We adopt Doubly Robust estimator (DR) for this task.

Proposed in [62], DR combines an outcome regression with a model for the treatment assignment

(propensity score) to estimate treatment effects. DR is an unbiased estimate of treatment effects,

if at least one of the two models are correctly specified. Hence, it has a higher chance of reliable

inference. CATE estimates τ̂qr are provided below.

τ̂qr =
1

|Iq|
∑
i∈Iq

(
ŷ(Xi, r) + (Yi − ŷ(Xi, Ri))

I(Ri = r)

π̄(Ri|Xi)

)
− 1

|Iq|
∑
i∈Iq

(
ŷ(Xi, 1) + (Yi − ŷ(Xi, Ri))

I(Ri = 1)

π̄(Ri|Xi)

)
,

where Iq := {i ∈ {1, . . . , N} : p(Xi) = q} is the set of indices in the historical data that belongs

to q. Further, ŷ and π̄ are the outcome and historical policy (i.e., propensity score) models,

respectively.

We end this section by discussing a practical consideration which is a desire to design policies

that depend on low-dimensional features, such as risk scores. In cases that we only use risk scores,
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not the full feature vector, it is critical that they satisfy the causal assumptions. We provide a

risk score formulation that satisfies this requirement.

Proposition 9. We define risk score functions as Sr(x) = P[Y (r) = 1|X = x] ∀r ∈ R. Suppose

S ∈ S is a (random) vector of risk scores. Also, let Y = (Y (1), . . . , Y (|R|)) be the vector of

potential outcomes. The following statements hold:

1. If Y ⊥ R|X, then Y ⊥ R|S.

2. If P (P(R = r|X = x) > 0) = 1 ∀x ∈ X , then P (P(R = r|S = s) > 0) = 1 ∀s ∈ S.

Under causal assumptions, Sr(x) = P(Y (r) = 1|X = x, R = r) = P(Y = 1|X = x, R = r),

which relies on observed data, rather than counterfactuals. According to Proposition 9, as in

general individuals respond differently to various treatments, one risk score per resource may be

required in order to summarize the information of X. Alternatively, one can utilize all features

to learn the propensity and outcome models and use those estimates in causal tree construction.

3.5 Computational Results

We conduct two sets of experiments to study the performance of our approach to design resource

allocation policies: (i) synthetic experiments where the treatment and potential outcomes are

generated according to a known model; (ii) experiments on the housing allocation system based

on HMIS data for youth experiencing homelessness. We use the causal tree implementation in

the grf package in R. We control the partition granularity by changing the minimum node size

parameter which is minimum number of observations in each tree leaf. We evaluate policies using

three estimators from the causal inference literature [62]: Inverse Propensity Weighting (IPW)

which corrects the mismatch between the historical policy and new policy by re-weighting the data

points with their propensity values, Direct Method (DM) which uses regression models to estimate

the unobserved outcomes, and DR. In addition, we include objective value of Problem (3.2)
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Figure 3.3: Synthetic data experiments: policy value vs. the minimum propensity weight (left)
and policy value vs. the number of queues (right). Each line corresponds to a different estimator.

obtained by matching flow and CATE estimates (CT). When models of outcome and propensity

are correctly specified, the above estimators are all unbiased [62].

3.5.1 Synthetic Experiments

We generate synthetic potential outcomes and resource assignments in the HMIS data collected

between 2015 and 2017 from 16 communities across the United States [46]. We use the following

setting using vulnerability score S (unless mentioned otherwise): π̄(SO|S > 0.2) = 0.3, π̄(SO|0.0 <

S ≤ 0.2) = 0.3 and π̄(SO|S ≤ 0.0) = 0.3. Additionally, π̄(RRH|S > 0.2) = 0.2, π̄(RRH|0.0 <

S ≤ 0.2) = 0.4 and π̄(RRH|S ≤ 0.0) = 0.3 and finally, π̄(PSH|S > 0.2) = 0.5, π̄(PSH|0.0 <

S ≤ 0.2) = 0.3 and π̄(PSH|S ≤ 0.0) = 0.4. The potential outcomes are sampled from binomial

distributions with probabilities that depend on S. For PSH, we use E[Y (PSH)|S ≤ 0.3] = 0.6,

E[Y (PSH)|0.3 < S ≤ 0.5] = 0.2 and E[Y (PSH)|0.5 < S] = 0.6. For RRH, E[Y (RRH)|S ≤ 0.2] =

0.2, E[Y (RRH)|0.2 < S ≤ 0.7] = 0.6 and E[Y (RRH)|0.7 < S] = 0.2. Finally, E[Y (SO)] = 0.

We evaluate policies obtained by solving Problem (3.2). We use decision trees for outcome and

propensity score models.

One of the goals of the synthetic experiments is to compare different estimators in a setting

where we observe the potential outcomes. Specifically, we study the performance of the estimators

for policy evaluation when propensity values are varied. We generate different datasets by changing
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the propensity values π̄(PSH|0.0 < S ≤ 0.2) = α and π̄(RRH|0.0 < S ≤ 0.2) = 0.7 − α for

α ∈ {0.02, 0.05, 0.1, 0.2, 0.3} and obtain the optimal policy for each dataset. Figure 3.3 shows

optimal policy values according to different estimators. We observe that across the x−axis range,

DR, DM and CT result in similar estimates which also agrees with the ground truth (GT).

However, when the minimum propensity score is small (< 0.05), IPW diverges from GT. This

is consistent with other findings in the literature suggesting that when propensities are too close

to 0 or 1, non-parametric estimators tend to have higher variance and converge at a slower rate

(with the number of data points) [108].

Next, we investigate the effect of treatment heterogeneity on the value of the optimal policy.

In particular, we study how much the granularity of partitions, or the number of queues, impacts

the policy value. Figure 3.3 summarizes the results. When the number of queues is equal to

1, the optimal policy is at its minimum value. In this case, the policy corresponds to an FCFS

policy as individuals queue in a single line and are prioritized according to the their arrival times.

The optimal policy value gradually increases (∼ 25% according to GT) as the number of queues

increases until it flattens. This suggests that by increasing the number of queues, we can leverage

the treatment effect heterogeneity across the queues to allocate resources more efficiently.

3.5.2 HMIS Data of Youth Experiencing Homelessness

We now showcase the performance of our approach to design policies that allocate resource among

the U.S. homeless youth. We defer the details on data preparation to the Appendix.

3.5.3 Data Pre-Processing and Estimation

Outcome Definition. We focus on the likelihood of stable exit from homelessness.

An exit from the system can be to any of the following destinations: “family,” “self-resolved,”

“RRH,” “PSH,” “deceased,” or “incarcerated.” Exiting due to incarceration or being deceased are

undesirable outcomes and are encoded as Y = 0 (left branch). “Family,” “self-resolve,” “RRH,”
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Figure 3.4: HMIS data: success definition flow chart (left) and heterogeneous treatment effect
using DR method (right)

and “PSH” are desirable outcomes but may be temporary exits, meaning that the individual may

return to homelessness shortly after. In addition, there are recorded exits that are simply due

to a “move” in the system from one service to another. We distinguish between these cases by

checking whether an individual is “still housed”, i.e., is at the stable exit destination. If re-housed,

we consider a 30-day threshold to decide whether it is a return to homelessness (Y = 0) or a move

in the system (Y = 1). This procedure for defining outcome is summarized in Figure 3.4.

Propensity Estimation. In order to obtain an unbiased estimation of the policy value, IPW

and DR approaches rely on propensity values. In our setting, the propensities are unknown but

can be estimated from data. This poses a challenge to find a model that fits the data while

being well-calibrated. We use different statistical models for multi-class classification to estimate

P(R = r|X = x),∀r ∈ R. We evaluate models based on the predictive power, calibration, and

fairness. For fairness, we adopt the test fairness criteria in [51] since evaluating the policy value

across different protected groups requires propensity values that are well-calibrated for those

groups. We defer the details on model selection to the Appendix. We note that the original

dataset does not satisfy the positivity assumption. That is, some groups of individuals have only

received a subset of the resources. Therefore, for data points with propensities less than 0.001,

we follow the status-quo policy and we exclude them from the policy optimization.
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Outcome Estimation. DM and DR methods rely on a model of the outcome under different

resources. We compare an array of models in terms of accuracy, calibration, and test-fairness.

The results are summarized in the Appendix.

Heterogenous Treatment Effect Estimation. We use causal trees with minimum node size equal

to 15 to estimate the average treatment effects across the NST score range for RRH and PSH.

According to Figure 3.4, PSH consistently has a higher treatment effect than RRH indicating that

it is a more effective resource. Further, the treatment effect of both resources increase with score

which suggests that higher-scored individuals benefit more from these resources. We also provide

results on the (unbiased) probability of exiting homelessness versus NST score in the Appendix.

Arrival Rate. Once the queues are constructed, we can estimate the arrival rate of individuals

from data. Given the heavy-traffic condition, we calculate the required rate of SO as µSO =

max (λQ − µRRH − µPSH, 0).

3.5.4 Policy Optimization Results

We now present the policy optimization results along three distinct objectives: policy value mea-

sured in terms of rate of stable exit from homelessness, fairness by race and age, and wait time.

Table 3.1 summarizes the results, where OPT is the optimal policy value without fairness con-

straints and OPT-fair (race), and OPT-fair (age) represent our method with fairness constraints

over race and age, respectively. As baselines, we simulate both a fully FCFS policy and the status

quo policy SQ (see Figure 3.1). We also compare with the deployed policy in the data SQ (data).

As IPW suffers in small-propensity settings, we exclude it from the estimators.

From Table 3.1, OPT, OPT-fair (race), and OPT-far (age) all outperform the baseline policies.

Specifically, OPT significantly improves the rate of stable exit from homelessness by 19% and 13%

(under DR estimates) over SQ and FCFS policies, respectively. Perhaps surprisingly, SQ performs

worse than FCFS which is due to how the cut scores are designed. Specifically, according to SQ

individuals with scores 4-7 are matched to RRH. However, the RRH treatment effect is highest
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Policy Rates of Stable Exit from Homelessness Wait Time (days)
CT DM DR

OPT 0.76 0.74 0.75 142.67
OPT-Fair (race) 0.76 0.75 0.76 142.64
OPT-Fair (age) 0.76 0.75 0.75 142.64

FCFS 0.68 0.68 0.66 142.64
SQ 0.66 0.63 0.63 182.21

SQ (data) 0.73 0.73 0.73 156.77

Table 3.1: Out-of-sample estimated policy performance measured in terms of rates of stable exit
from homelessness and wait times.

for scores above 7 (See Figure 3.4). Compared to SQ (data), our policy values are competitive.

We improve the wait time over SQ and SQ (data) by 21% and 9%, respectively and obtain values

similar to FCFS policy, suggesting that further algorithmic improvement is not possible unless

problem inputs, such as resource arrival rates, change.

Figure 3.5 compares the worst-case rate of exiting homelessness across age (below and over

17 years old) and racial groups (White, Black, and Other) according to DR estimator. First,

we observe that an FCFS policy does not necessarily result in policies that are fair in terms

of their outcomes neither by age nor by race. This is because FCFS policies ignore treatment

effect heterogeneity. In other words, according to the FCFS discipline, everyone has the same

probability of receiving any one of the resource types (fairness in allocation). However, not

everyone benefits equally from the resources. Indeed, Black individuals seem to suffer the most

under a fully FCFS policy. SQ also yields a low worst-case performance mainly due its low

overall performance. SQ (data) has relatively better worst-case performance. However, there is
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Figure 3.5: Out-of-sample rates of exit from homelessness by race (left panel) and age (right
panel) using the DR estimator.
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Figure 3.6: Optimal Topology

still a significant gap between the performance of Black/Other groups and Whites. By explicitly

imposing fairness constraints on policy outcomes across protected groups, OPT-Fair significantly

improves the performance for the Black and Other groups. Figure 3.5, similar observations can be

made for fairness by age, where compared to baselines with no fairness considerations, OPT-Fair

exhibits significant improvements in the policy value for those with age below 17.

We now present a schematic diagram of OPT and OPT-fair matching topologies. Figure 3.6

is the matching topology corresponding to OPT policy. Compared to SQ, OPT uses different cut

points on NST score, specifically for the lower-scoring individuals. Across the four score groups,

we observe a gradual transition from eligibility for a more resource-intensive intervention (PSH)

to a basic intervention (SO). Figure 3.7 depicts OPT-fair topology for fairness on race, in which

SO
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Figure 3.7: Matching topology split by resource type: left (SO), middle (RRH) and right (PSH).
Individuals are divided into four different score groups: S < 6, S = {6, 7}, S = {8, 9}, S > 9.
Queues are constructed based on score groups and race jointly. Solid lines indicate that a resource
is connected to the entire score group (a collection of queues). Dotted lines indicate connection
to a single queue within the score group. For example, in the left figure, SO is only connected to
the individuals with S = {6, 7} and race White.
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queues are constructed using the joint values of NST score and race. According to this figure, PSH

is matched to all individuals with scores above 9 as well as mid-scoring Black individuals, i.e., 6 ≤

score ≤ 9. RRH is connected to every individual in the mid-score range. Our modeling strategy

uses the protected characteristics in order to ensure fairness. This is motivated by discussions

with our community advisory board, including housing providers/matchers and people with past

history of homelessness, who suggested that in order to create a fair housing allocation system

there ought to be special accommodations for historically disadvantaged people. Our policies align

with affirmative action policies that take individuals’ protected attributes into account in order

to overcome present disparities of past practices, policies, or barriers by prioritizing resources for

underserved or vulnerable groups. In this regard, recently HUD restored Affirmatively Furthering

Fair Housing rule that requires “HUD to administer its programs and activities relating to housing

and urban development in a manner that affirmatively furthers the purposes of the Fair Housing

Act”, extending the existing non-discrimination mandates [58].

Our approach can also be extended to non-affirmative policies. This is possible by imposing

constraints that ensure a topology has the same connections to all protected groups within a score

group. Such constraints are expressible as linear constraints and can be easily incorporated in

Problem (3.2). We demonstrate the result for fairness on race in Figure 3.8. We observe that

all individuals who belong to a certain queue, regardless of their race, are eligible for the same

types of resources. However, as a result of combining the queues, the worst-case policy value

across the racial groups decreases from 0.76 to 0.73 which still outperforms SQ and SQ (data)

Race - not dependent on race col

8-9

> 9

< 6 

6-7 

PSH

RRH

SO

Figure 3.8: Fair topology (race)
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with worse-case value of 0.61 and 0.69, respectively. We defer the results for fairness by age to

Appendix C.

3.6 Conclusion and Broader Impact

Recently, there has been a significant growth in algorithms that assist decision-making across

various domains [159, 82, 168, 131]. Homelessness is a pressing societal problem with complex

fairness considerations which can benefit greatly from data-driven solutions. As empirical evidence

on ethical side effects of algorithmic decision-making is growing, care needs to be taken to minimize

the possibility of indirect or unintentional harms of such systems. We take steps towards this goal.

Specifically, we propose interpretable data-driven policies that make it easy for a decision-maker

to identify and prevent potential harms. Further, we center our development around issues of

fairness that can creep into data from different sources such as past discriminatory practices.

We provide a flexible framework to design policies that overcome such disparities while ensuring

efficient allocations in terms of wait time and policy outcome.

There are also crucial consideration before applying our framework in real-world. Our ap-

proach relies on several key assumptions about the data. Specifically, the consistency assumption

requires that there is only one version of PSH, RRH, and SO. In practice, different organizations

may implement different variants of these interventions. For example, combining substance abuse

intervention with PSH and RRH. Such granular information about the interventions, however, is

not currently recorded in the data which may impact CATE estimates. Further, the exchangeabil-

ity assumption requires that there are no unobserved confounders between treatment assignment

and outcomes. Even though our dataset consists of a rich set of features for each individual, in

practice, unobserved factors may influence the allocation of resources which calls for more rigorous

inspection of service assignment processes. Unobserved confounders may lead to biased estimates

of treatment effects which in turn impacts the allocation policies. In addition, our dataset consists
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of samples from 16 communities across the U.S., which may not be representative of new com-

munities or populations. Hence, the external validity of such policies should be carefully studied

before applying to new populations. Finally, there are other domain-specific constraints that we

have not considered as they require collecting additional data. For example, resources can not be

moved between different CoCs. We leave such considerations to future work.
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Chapter 4

Causal Inference for Ethical Decision-Making
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4.1 Introduction

Recently, there has been a growing interest in applying causality for unfairness evaluation and

mitigation [115, 109, 134, 50]. Causality provides a conceptual and technical framework for ad-

dressing questions about the effect of (hypothetical) interventions on, in this context, sensitive

attributes such as race, gender, etc. This is in contrast with fairness criteria that merely rely on

passive observations [44, 101, 85, 191, 110]. Observational criteria achieve fairness by constraining

the relationships between variables, often in conflicting ways. Consequently, it has been shown

that it is impossible to satisfy these criteria simultaneously on a dataset [110, 51, 169]. Causality

helps unify these different perspectives by shifting the focus from association to causation in order

to identify and mitigate the sources of disparity. This perspective is also more compatible with

legal requirements of evaluating algorithmic bias discussed in earlier work [186].

Nevertheless, causal fairness too has been subject to criticism. One objection is around the

validity of the assumptions in causal modeling. The majority of recent research on causal fairness

has focused on structural causal models, which encode the relationships between variables via

a Directed Acyclic Graph (DAG) [115, 134, 50]. In realistic settings, however, constructing the

DAG model is a challenging task. In particular, it is generally difficult to come up with arguments

for the absence of links without conducting controlled experiments [95]. Causal discovery from

observational data also relies on strong untestable assumptions or do not generally pin down all

possible causal details in a DAG [170, 120].

There are also concerns about considering categories such as race or gender as a cause [122,

112, 92, 104]. From one perspective, most of these attributes are determined at the time of an

individual’s conception and are modeled as source nodes in a causal graph which can directly

or indirectly influence the descendent variables. This view raises several major issues. Through

such conceptualization, in order to evaluate and mitigate unfairness, one is inevitably required to
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identify all possible pathways through which sensitive attributes influence an outcome. In addi-

tion to the modelling challenge this view poses, in practice a single entity may not be held liable

for the discrimination across an entire causal pathway. In this regard, many anti-discrimination

mechanisms investigate whether a particular person or institutional actor has behaved in a dis-

criminatory manner. For example, in the employment setting, a racial discrimination lawsuit

aims to determine whether a firm has withheld some benefits such as hiring with regard to racial

identity of the applicant. However, disparities in hiring rates for different groups might be a

reflection of either discrimination or differences in the applicant pool’s qualifications. For ex-

ample, if past discrimination in the educational system has led to some applicants having lower

educational achievements, by hiring based on educational achievements, the employer will per-

petuate the effects of this discrimination. Under anti-discrimination law, however, as long as

the employer makes the hiring decision based on educational achievements that are legitimately

connected with the job and business needs—with no regard to race—no liability is attached. In

fact, if the employer seeks to proactively address past societal discrimination, this could lead to

reverse discrimination lawsuits [129]. Another issue is post-treatment bias, which arises when one

controls for post-treatment variables, resulting in biased estimates of the treatment effect [160].

Since some attributes such as race, gender, etc. are fixed at the time of one’s conception, almost all

measurable variables become post-treatment. Hence, conditioning on those variables may lead to

misleading estimates of discrimination. Removing those variables, e.g., as proposed in [115, 134],

leaves little to no information for valid causal analysis.

Alternatively, many view attributes such as race or gender as social constructs that evolve over

the course an individual’s life. Recently, [93, 104] studied epistemological and ontological aspects

of counterfactuals in the context of fairness evaluation. In [93], the authors argue that social

categories such as race may not admit counterfactual manipulation. In [104], the authors aim to

address this problem by proposing a set of tenets which require a decision-maker to state implicit

and unspecified assumptions about social ontology as explicitly as possible. Despite recent efforts,

87



there has been limited empirical investigation on how the nature of the intervention impacts the

scope and validity of causal analysis of sensitive attributes and conclusions one draws.

In this work, we investigate the practical and epistemological challenges of applying causality

for fairness evaluation. In particular, we highlight two key aspects that are often ignored in the

current causal fairness literature: nature and timing of the interventions on social categories such

as race, gender, etc. Further, we discuss the impact of this specification on the plausibility of

causal assumptions. To facilitate this discussion, we draw a distinction between intervening on

immutable attributes and their perception, and demonstrate how such conceptualization allows

us to disentangle the potential unfairness along causal pathways and attribute it to the respective

actors. The idea that perceptions matter and can be manipulated is not new. For example,

researchers have examined the effect of manipulated names associated with political speeches [164]

and resumes [29]. Nevertheless, in the machine learning literature, little attention has been paid

to the consequences for valid causal inference for unfairness evaluation and mitigation. We make

the following contributions:

• We propose a causal framework to investigate and mitigate unfairness of a particular actor’s

behavior, along a causal pathway. To the best of our knowledge, no prior work has aimed to

isolate such effects for fair prediction. To tackle this problem, we highlight the importance

of identifying the timing and nature of the intervention on social categories and its impact

on conducting valid causal analysis including avoiding post-treatment bias.

• We illustrate how causality can address the limitations of existing fairness criteria, including

those that depend upon statistical correlations. In particular, we introduce the causal

variants of the popular statistical criteria for fairness and we make a novel observation that

under the causal framework there is indeed no fundamental disagreement between different

fairness definitions.
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• We conduct extensive experiments where we demonstrate the effectiveness of our method-

ology for unfairness evaluation and mitigation compared to common baselines. Our results

indicate that the causal framework is able to effectively identify and remove disparities at

various stages of decision-making.

4.2 Related Work

There are two main frameworks for causal inference: structural causal models [90], also referred

to as DAGs, and the potential outcomes framework (POF) [162]. DAGs can be viewed as a se-

quence of steps for generating a distribution from independent noise variables. Causal queries are

performed by changing the value of a variable and propagating its effect through the DAG [90].

POF, on the other hand, starts by defining the counterfactuals with reference to an intervention

and postulates potential outcomes under different interventions, albeit some unobserved. In gen-

eral, DAGs encode more assumptions about the relationships of the variables; i.e., one can derive

potential outcomes from a DAG, but potential outcomes alone are not sufficient to construct the

DAG. Consequently, POF has been more widely adopted in empirical research, including bias

evaluation outside of ML [29, 179]. More detailed discussion on the differences between the two

frameworks in relation to empirical research can be found in [95]. Causal inference on immutable

attributes has appeared in several works including [179, 109] via proxy variables and [83] through

the perception of an immutable attribute. In this work, we follow the footsteps of [83] and provide

a rigorous framework to reason about the causal effect of immutable attributes which helps avoid

some of the common issues in causal inference including post-treatment bias.

Recently, there has been much interest in causality in the machine learning community, where

the majority of works have adopted the DAG framework [115, 109, 194, 193, 119, 50] with a few

exceptions that rely on POF [134, 107]. Specifically, [115] provides an individual-based causal

fairness definition that renders a decision fair towards an individual if it is the same in the actual

89



world and a counterfactual world where the individual possessed a different sensitive attribute.

In [109], the authors propose proxy discrimination as (indirect) discrimination via proxy variables

such as name, visual features, and language which are more amenable to manipulation. Addi-

tionally, [134, 50] study path-specific discrimination, where the former proposes to remove the

descendants of the protected attribute under the unfair pathway and the latter aims to correct

the those variables. In [107], the authors propose two causal definitions of group fairness: fair on

average causal effect (FACE), and fair on average causal effect on the treated (FACT) and show

how these quantities can be estimated for specific attributes such as race or gender as the treat-

ment. The authors restrict their attention to the fairness evaluation task and do not discuss the

distinction between pre- and post-treatment variables. Further, [194, 193] discusses counterfac-

tual direct, indirect, and spurious effects and provides formulas to identify these quantities from

observational data. These works rely on a causal model, or DAG, and develop different method-

ologies to identify and mitigate unfairness. However, a clear discussion of the causal assumptions

is typically missing, which consequently hinders the adoption of these methods in practice. In

addition, the validity of the causal assumptions are influenced by the nature of the postulated

intervention and its timing, which is not clearly articulated in the current literature. In many

applications, discrimination by specific individuals or institutional actors is the subject of a study

not an entire causal pathway. Our work makes this distinction and discusses the importance of

specifying the timing and nature of a hypothetical intervention to conduct such analyses.

Finally, we briefly review the observational notions of fairness. Demographic parity and its

variants have been studied in numerous papers [63, 69, 54]. Also referred to as statistical parity,

this fairness criteria requires the average outcome to be the same across different sensitive groups.

Conditional statistical parity [69, 54] imposes a similar requirement after conditioning on a set of

legitimate factors. In the classification setting, equalized odds and a relaxed variant, equality of

opportunity, have been proposed [85] to measure the disparities in the error rate across different
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sensitive groups. The aforementioned criteria can be expressed using probability statements in-

volving the observed random variables at hand, hence the name observational. These criteria are

often easy to state and interpret. However, they suffer from a major limitation: it is impossible

to simultaneously achieve these criteria on any particular dataset [110, 51, 169]. In this work, we

revisit these notions and introduce their causal variants, where we show that under the causal

framework, there is no fundamental disagreement between different criteria.

4.3 Causal Fairness: A Potential Outcomes Perspective

We consider a decision-making scenario where X ∈ X ⊆ Rn is the available set of attributes for an

individual which we aim to use in order to make a (discrete) decision Y ∈ {0, 1}. An individual is

further characterized by a sensitive attribute A ∈ {0, 1} for which fair treatment is important. We

assume A is a single binary variable, however, our discussion can naturally be extended to cases

where A has more than two levels. It also applies when there is more than one sensitive attribute,

such as the intersection of race and gender, by considering their joint values. Causal fairness

views the unfairness evaluation and mitigation problem as a counterfactual inference problem.

For example, we aim to answer questions of type: What would have been the hiring decision, if the

person had been perceived to be of a different gender? or Would the person have been arrested if

they had been perceived to be a different race? Such causal criteria are centered around the notion

of an intervention or treatment on social categories such as gender and race. Formally, we build

on POF [162] and define Y (A), A ∈ {0, 1} as random variables describing the potential outcomes

under different values of A, i.e., the outcome after we manipulate one’s sensitive attribute A (its

perception). It is important to note that for any individual, only one of the values of Y (A) is

observed which is the outcome corresponding to the possessed value of A. Other outcomes are

considered as counterfactual quantities and are treated as unobservable variables.
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X X̃(A)A Y(A) time

Figure 4.1: Decision-making timeline: the time when one’s sensitive attribute A is perceived
determines pre- and post-treatment variables. Here, X is the vector of pre-treatment variables,
X̃ is a post-treatment variable and Y is the outcome or decision.

In this work, we take a decision-maker’s perspective considering how their perception of one’s

sensitive attribute may lead to different decisions. Through this conceptualization, it is possible

for discrimination to operate not just at one point in time and within one particular domain but

at various points within and across multiple domains throughout the course of an individual’s life.

For example, in the context of racial discrimination, earlier work has recognized potential points

of discrimination across different domains including labor market, education, etc. [147].

Consequently, we need to specify the point in time at which we wish to measure and mitigate

unfairness. In causal terms, this is closely related to the notion of timing of the intervention,

i.e., the time at which one’s sensitive attribute is perceived by an actor. To illustrate, consider a

hiring scenario and suppose we are interested in evaluating whether the hiring decision is fair with

respect to gender or not. We can investigate unfairness at different stages, e.g., from the first time

an individual comes into contact with the company (e.g., resume review), progresses in the system

(during interviews), or when the final decision is being made. We may even take a much broader

perspective and investigate the effect of gender from the point an individual attends college and

study how gender affects education and subsequently the opportunities in the job market. Indeed,

as we expand our view the causal inference problem we are faced with becomes increasingly more

challenging but the conceptual framework remains valid.

Both timing and nature of the intervention impact the conclusions we draw. For example,

under an unfair educational system, a hiring decision that is based on educational achievements

will perpetuate those biases, even if it treats individuals fairly given their educational background.

Similarly, a discriminatory interview process will result in an unfair hiring decision. However,
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the difference is that in the latter, the company is now liable for the discriminatory behavior

as it stems from the a point in its decision-making process. The timing of the intervention is

thus important in conducting causal analysis. In particular, consider an interview process which

is discriminatory, resulting in unfair interview scores for a particular group. In our fairness

evaluation, if we control for the interview score, we will find no relationship between gender and

hiring decision contrary to our intuition that the decision-maker discriminates between female

and male candidates through the interview score. This observation is due to post-treatment bias

cautioned in the causal inference literature which happens when variables that are fixed after the

intervention are used in evaluating the treatment effect [132]. Figure 4.1 demonstrates this over

a decision-making timeline. After we fix the point of (hypothetical) intervention on A, variables

X̃ ∈ X̃ ⊆ Rm determined afterwards are considered as post-treatment variables and in principle

are affected by A. Hence, we introduce the counterfactual values of X̃(0), X̃(1) to differentiate

between pre-treatment and post-treatment variables. Consequently, the observed values of post-

treatment variables are determined as X̃ = X̃(0)(1−A) + X̃(1)A.

Furthermore, the nature of the intervention influences the causal effect that we are able to

uncover. For instance, in the study conducted in [29], the authors manipulated the names on

the resumes to measure racial discrimination which only allowed them to capture the level of

discrimination exhibited through the relationship between one’s name and perception of race.

Under a different manipulation, e.g., zip code of the applicant, the outcome of the study would

have been different. In observational studies, where the analyst has no control over how an

individual’s sensitive attribute is perceived, a careful examination of mechanisms through which

one’s attributes are perceived is necessary. Indeed, it is possible to identify several mechanisms

affecting perceived attributes (e.g., name, clothing, language, etc.). In this case, it is possible to

study the joint effect of the mechanisms by modeling the missing counterfactual values, under

each mechanism, as random variables with a distribution. The distribution for each individual’s
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missing counterfactual value can then be represented by a stochastic mixture of distributions

associated with each mechanism [83].

Building on the above discussion, we define fairness in terms of the treatment effect of a specific

intervention on perceived sensitive attribute at a particular point in time. We refer to this notion

as causal parity and under the POF, we can express it mathematically via the following definition.

Definition 3 (Causal Parity). A decision-making process achieves causal parity if E[Y (1) −

Y (0)] = 0.

In the above definition, τ = E[Y (1)−Y (0)] is the treatment effect of A on Y . As stated earlier,

both potential outcomes Y (0), Y (1) are not simultaneously observed for any individual. In order

to conduct meaningful causal inference to identify the treatment effects several assumptions are

necessary. We review the assumptions and discuss how the precise specification of the intervention

helps establish their plausibility.

4.3.1 Causal Assumptions for Identification

Assumption 8. There is a set of established conditions under which causal inference becomes

possible:

• Stable Unit Treatment Value Assumption (SUTVA): It states the treatment that one unit

(individual) receives does not change the potential outcomes of other units.

• Consistency: Formally, Y = Y (0)(1 − A) + Y (1)A. In words, Y agrees with the potential

outcome under the respective treatment. The implication of this assumption is that there

are no two “flavors” or versions of treatment such that A = 1 under both versions but the

potential outcome for Y would be different under the alternative versions.
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• Positivity: At each level of pre-treatment variables X, the probability of receiving any form

of treatment is strictly positive. Mathematically,

P (P(A = a |X = x) > 0) = 1 ∀a ∈ {0, 1},x ∈ X .

• Conditional Exchangeability: it states that those individuals receiving the treatment should

be considered exchangeable (with respect to potential outcomes Y and the post-treatment

variable X̃) with those not receiving the treatment and vice versa. Mathematically,

Y , X̃ ⊥ A |X = x ∀x ∈ X ,

where Y = {Y (0), Y (1)} , X̃ =
{
X̃(0), X̃(1)

}
and X is the vector of pre-treatment variables.

Earlier works have emphasized the criticality of these assumptions in determining the causal

effects [163]. Here, we highlight their importance in the context of fairness evaluation. SUTVA

can also be viewed as a non-interference assumption and depends very much on the problem under

study and the choice of the decision-maker. For example, for a recruiter as the decider, one should

think carefully whether the recruiter’s decision to proceed with an application is independent from

case to case. If a recruiter screened three candidates in a row with exceptional resumes, they might

raise their standards when judging the fourth resume. In this case, SUTVA is violated as historical

data on other candidates influences the future candidates outcomes.

The consistency assumption means, for example, that for candidates perceived as either male

or female, an employer would not base the hiring decision on the level of “manliness.” Similarly,

the degree of “blackness” of an individual should not affect the decision made for an individual.

This assumption, however, can be potentially relaxed with information beyond what is typically

assumed. For example, if an accurate estimate of the level of “manliness” or skin color were

recorded, then the treatment could be conceptualized as having multiple levels [83]. Consistency
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can also be viewed as treatment invariance, which we discussed in the previous section in the

context of nature of intervention on social categories. When intervening on social categories such

as race, it is possible that different factors contribute to the perception of one’s sensitive attribute.

Under consistency, one needs to make sure that there is sufficient data in order to capture the

different levels of “race.” Without such nuanced data, it is still possible to measure the causal

effect, but the interpretation changes, as the estimated causal effect is an average of multiple

potential treatments.

The positivity assumption is also essential in order identify the treatment effect. It requires

that there is not a complete overlap between the treatment assignment and pre-treatment vari-

ables. For example, if all of the women in a hiring pool have a PhD, and all of the men only have

a Master’s degree, then it is not possible to separate the effect of gender discrimination from the

effect of the educational attainment on the employment decision. Positivity is often easy to verify

from the data once the pre-treatment variables X are determined.

Conditional exchangeability is one of the cornerstone assumptions for causal inference, which

is in principle impossible to verify in observational studies. Conditional exchangeability in ex-

perimental settings can be obtained through stratified randomization. In order to increase the

plausibility of this assumption in observational contexts, analysts typically include as many pre-

treatment variables as possible to ensure that as many confounders as possible between treatment

and outcome are accounted for. Intuitively, the goal is to ensure that once all of the pre-treatment

variables X are controlled for, the allocation of individuals between treatment and control is as

close to random as possible. In the fairness setting, this would mean that, after controlling for

X, the only systematic difference between the two groups is the perception of their protected

attribute (i.e., whether they were discriminated against), allowing for an empirical estimate of the

effect of discrimination. We note that in the exchangeability assumption, we have the conditional

independence of the counterfactuals of both X̃ and Y . This is a key distinction with earlier

work [107] that does not differentiate between pre- and post-treatment variables.
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In more complicated settings, where an individual interacts with multiple parts of a system,

we may have more than one choice of decision-maker to study. In such situations, an analyst may

have to balance the need to make the exchangeability assumption plausible against the desire

to study a decision-maker’s behavior early in the decision-making chain. Choosing the timing

of the intervention towards the later interactions renders more measured variables pre-treatment

which in turn can make the exchangeability assumption more plausible. However, by treating

such variables as pre-treatment and thus conditioning on them in the analysis, the analyst forgoes

the detection of any prior discrimination that may have affected the values of these variables.

In cases where there is sufficient data to detect discrimination starting from earlier stages of

decision-making, it may be still important to pin down the different sources of discrimination

throughout the decision-making process. For example, in the hiring context, suppose from the

onset (the first interaction of the applicant with the company), a rich set of data about the

applicant’s background and qualifications is collected that allows an analyst to determine the

hiring process is unfair towards to a group. In such a case, it is important to understand whether

discrimination is attributed to the recruitment process, the interview stage or the final hiring

process. Additionally, there may be a long delay between the time of perceiving an individual’s

sensitive attribute and outcome. In this case, it may be helpful to use post-treatment variables

to improve the precision [11].

4.3.2 Fairness Evaluation

So far, we have examined the causal assumptions and their implications in the context of fairness

evaluation. Once the plausibility of the assumptions are established, we can proceed to estimate

the treatment effect of A on Y . While there are many approaches in estimating the causal effect,
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we mainly focus on direct regression method. We first consider a case where post-treatment

variables are absent. Under causal assumptions, treatment effect of A can be formulated as

τ = E[Y (1)− Y (0)] = E [E [Y (1)− Y (0) |X = x]]

= E [E [Y |X = x, A = 1]− E [Y |X = x, A = 0]] ,

which can be estimated from observational data via two separate regression models. When post-

treatment variables are present, it may be helpful to use them in order to improve the precision of

treatment effect estimates. In this case, simply conditioning on those variables will introduce bias

in the analysis. Instead, we should treat them as dependants on A. In order to emphasize the

causal effect of post-treatment variables on the potential outcomes, we consider potential outcomes

Y (A, X̃(A)) that are indexed by both the treatment and the post-treatment counterfactuals. We

estimate the treatment effect of A on Y is given as τ = E
[
Y (1, X̃(1))− Y (0, X̃(0))

]
. In the

mediation literature, this quantity is known as total effect [94].

Estimating the total effect poses a considerable identification challenge as it depends on four

(X̃(0), X̃(1), Y (0, X̃(0)), Y (1, X̃(1))) counterfactuals which are not simultaneously observed for

any individual. To tackle this problem, we propose to use imputation [161] which is commonly

used in causal inference literature to assign values to unobserved variables in the data. Precisely,

in order to attain the causal effect of A on Y , we sequentially impute the missing variables were

conditional on the previous step. Precisely, we first impute the counterfactual post-treatment

variables X̃ as a function of the pre-treatment variables X and A. Next, we impute unobserved

Y (A, X̃(A)) values as a function of pre-treatment variables X, post-treatment counterfactuals X̃

and A. Similar sequential imputation techniques have been used in causal inference literature in

order to evaluate the long-term impact of policy shifts [187].
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4.3.3 Unfairness Mitigation

In the previous section, we focused solely on fairness evaluation which we formulated as a causal

inference problem on the effect of A on Y . Here, we discuss how we can mitigate unfairness if the

treatment effect of A on Y is non-zero. Similar to the previous section, we distinguish between

pre- and post-treatment variables as the post-treatment variables are affected by A. The core idea

of our unfairness mitigation approach is to adjust the post-treatment and outcome variables to

achieve τ = 0. The idea of adjusting downstream variables, affected by sensitive attributes, has

been recently investigated in the fair ML literature and in the context for mitigating path-specific

effects under the DAG framework [50]. In this work, we are interested in mitigating unfairness

that attributed to a specific actor’s decision-making process, rather than an entire causal path.

Intuitively, our approach is based on the assumption that in a fair world, everyone is treated with

no regard to their group membership. In other words, we deem a decision-making process fair if

everyone is treated as if they belong to the same group, which we refer to as a baseline group.

The baseline group can be viewed as either the majority group or a historically advantaged group.

We first consider a setting with no post-treatment variables and assume E[Y (1) − Y (0)] ̸= 0.

Let A = 0 be the baseline group. If we had access to Y (0) for every individual in the population,

we could use that in order to learn a fair classifier. That is, if we observed the outcome of

individuals had they belonged to the baseline group, we could use this data to learn a predictive

model. The reason is that when we use Y (0) to learn a model, we are effectively eliminating

decision-maker’s unfavorable attitude towards membership to group A = 1. Consequently, we

can model the prediction problem as P(Y (0) = 1 | X = x). In the presence of post-treatment

variables, we employ a similar approach in order to eliminate the discriminatory effects of A.

Therefore, we formulate the prediction problem as P(Y (0) = 1 | X = x, X̃(0) = x̃), in which

we use X̃(0) which is the value of the post-treatment variable had the individual belonged to

group A = 0. Remarkably, under this formalization causal parity is automatically achieved as
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E[Y (0) − Y (0)] = 0. In words, we are practically assuming that an the potential outcomes for

an individual is the same and is equal to A = 0, regardless of the observed value of A. A key

challenge with this approach is that Y (0) values are not observed for every individual. We leverage

imputation from causal inference literature to tackle this problem [161].

4.4 Trade-offs under the Lens of Causality

We now turn to another important aspect of our analysis. We introduce causal variants of common

statistical criteria of fairness to study their behavior under the causal lens.

4.4.1 Causal Fairness Definitions

We center our discussion on the criteria with known impossibility results in the fair ML literature.

Definition 4 (Conditional Causal Parity). A decision-making process achieves conditional causal

parity if

E[Y (1)− Y (0) |X = x] = 0∀x ∈ X .

The above definition is closely related to conditional statistical parity which aims to evaluate

fairness after controlling for a limited set of “legitimate” factors [101]. The set of legitimate factors

significantly impacts the conclusions we draw. However, it is typically assumed as given, e.g., by

domain experts. In contrast, in our definition X collects all the pre-treatment variables. Hence,

once the nature of the intervention is explicitly defined, all remaining pre-treatment variables can

be considered as legitimate since the main effect we aim to identify is the effect of the treatment.

Definition 5 (Causal Equalized Odd). A predictor Ŷ satisfies causal equalized odds if:

P(Ŷ = 1 | Y (0) = 1) = P(Ŷ = 1 | Y (1) = 1)

P(Ŷ = 1 | Y (0) = 0) = P(Ŷ = 1 | Y (1) = 0)
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The above definition is the causal counterpart of equalized odds proposed in [85]. It states

that the probability of receiving a positive prediction Ŷ = 1 in worlds where everyone is treated

as A = 0 or A = 1 should be the same. Therefore, an individual does not have any preferences to

be in either of these worlds since in either world the prediction is the same. Next, we define the

causal variant of calibration [110]. Calibration is defined in the context of risk scores.

Definition 6 (Causal Calibration). Let S ∈ S denote a random variable encoding an individ-

ual’s risk score. The risk assignment is well-calibrated within groups if it satisfies the following

condition:

P(Y (0) = 1 | S = s) = P(Y (1) = 1 | S = s) ∀s ∈ S.

Causal calibration states that a risk score S should have the same meaning in worlds where

everyone is treated as A = 0 or A = 1, i.e., the proportion of positive outcomes in either worlds

should be the same for any fixed S = s. Subsequently, we can define causal positive predictive

parity.

Definition 7 (Causal Positive Predictive Parity). A predictor Ŷ satisfies causal positive predictive

parity if:

P(Y (0) = 1 | Ŷ = 1) = P(Y (1) = 1 | Ŷ = 1).

Causal predictive parity is applicable in the binary decision-making scenarios and has a similar

interpretation as causal calibration in that it requires the proportion of positive outcomes in worlds

with A = 0 and A = 1 to be the same for any fixed Ŷ = 1. Therefore, an individual with positive

prediction does not feel being discriminated against since in both worlds, the rate of positive

outcome is the same.
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4.4.2 Trade-offs among Causal Criteria of Fairness

We investigate two main impossibility results known for the statistical fairness criteria and show

that there is no fundamental disagreement between their causal variants.

Causal Parity and Conditional Causal Parity. It is easy to see that statistical parity and

conditional statistical parity may not be satisfied simultaneously on a dataset. The Berkeley

college admission study is a notorious example [40]. In this study, it was shown that while female

students where admitted at a lower rate compared to the male students, after controlling for

department choice, the difference in admission rates became insignificant among the two groups.

This observation can be expressed formally as below.

Observation 1. There exists a joint distribution p(X, A, Y ) such that conditional statistical par-

ity does not imply statistical parity, i.e., E[Y | X = x,A = 1] − E[Y | X = x,A = 0] = 0 ∀x ∈

X ≠⇒ E[Y | A = 1]− E[Y | A = 0] = 0.

Contrary to the above result, it is straightforward to show that conditional causal parity

implies causal parity.

Proposition 10. Conditional causal parity implies causal parity. Mathematically,

E[Y (1)− Y (0) |X = x] = 0 ∀x ∈ X =⇒ E[Y (1)− Y (0)] = 0.

Proof. The proof follows simply from taking the expectation over X. ■

The intuition behind the above result is that E[Y | A] merely measures the statistical depen-

dence between Y and A and does not differentiate between different sources of dependence, e.g.,
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female students applying for more competitive departments than male students, or a discrimina-

tory admission process. We note that conditional causal parity is a more stringent requirement

than causal parity and the reverse implication does not generally hold true in Proposition 10.

Causal Positive Predictive Parity and Causal Equalized Odds. It is well-known that one

can not achieve positive predictive parity or calibration together with equalized odds simultane-

ously unless either the base rates P(Y | A = a) are equal or the classifier is perfect [110, 51]. Here,

we show no such restrictions are necessary for their causal variants. We first define f : S → {0, 1}

as a mapping from the risk score S to binary prediction Ŷ . For example, f(S) = I(S > θ)

classifying the data points based on a threshold.

We now present our main results.

Theorem 2. Causal calibration implies causal parity and causal equalized odds.

Proof. First, we note that causal calibration implies causal parity by taking the expectation over

s ∈ S. Also, we can show ∀s ∈ S, the equality P(Y (0) = 1 | S = s) = P(Y (1) = 1 | S = s)

implies:

P(S = s | Y (0) = 1)P(Y (0) = 1) = P(S = s | Y (1) = 1)P(Y (1) = 1)

⇒P(S = s | Y (0) = 1) = P(S = s | Y (1) = 1)

⇒P(Ŷ = f(s) | Y (0) = 1) = P(Ŷ = f(s) | Y (1) = 1).

Similarly, we can show:

P(Y (0) = 0 | S = s) = P(Y (1) = 0 | S = s)⇒P(Ŷ = f(s) | Y (0) = 0) = P(Ŷ = f(s) | Y (1) = 0).

■
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Causal parity, i.e., P (Y (0) = 1) = P (Y (1) = 1), is satisfied if decisions are made regardless

of one’s group membership and is different from the equal base rate assumption which does

not necessarily hold in many applications. The above result shows that there is an inherent

compatibility between different causal fairness criteria as achieving one automatically implies one

or two other criteria.

Lemma 4. If A/B = C/D and (1−A)/(1−B) = (1− C)/(1−D), then A = C and B = D.

Proof.

A

B
=

C

D
⇒ A−B

B
=

C −D

D

1−A

1−B
=

1− C

1−D
⇒ A−B

1−B
=

C −D

1−D

⇒
1−B

B
=

1−D

D
.

It follows that A = C and B = D. ■

Theorem 3. Causal equalized odds implies causal parity and causal positive predictive parity.

Proof.

P(Ŷ = 1 | Y (0) = 1) = P(Ŷ = 1 | Y (1) = 1)⇒ P(Y (0) = 1 | Ŷ = 1)

P(Y (0) = 1)
=

P(Y (1) = 1 | Ŷ = 1)

P(Y (1) = 1)
.

P(Ŷ = 1 | Y (0) = 0) = P(Ŷ = 1 | Y (1) = 0)⇒ P(Y (0) = 0 | Ŷ = 1)

P(Y (0) = 0)
=

P(Y (1) = 0 | Ŷ = 1)

P(Y (1) = 0)
.

From Lemma 4, it follows that P(Y (0) = 1) = P(Y (1) = 1) and P(Y (0) = 1 | Ŷ = 1) = P(Y (1) =

1 | Ŷ = 1), where the first and second equations correspond to causal parity and causal positive

predictive parity, respectively. ■

We conclude this section by providing a complementary result that relates conditional causal

parity to causal calibration and causal positive predictive parity.
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Proposition 11. Given a risk score as a function of pre-treatment variables X, i.e., S = h(X), it

holds that conditional causal parity implies causal calibration and causal positive predictive parity.

P(Y (0) = 1 |X = x) = P(Y (1) = 1 |X = x) ∀x ∈ X

⇒P(Y (0) = 1 |X ∈ h−1(s)) = P(Y (1) = 1 |X ∈ h−1(s)) ∀s ∈ S

⇒P(Y (0) = 1 | h(X) = s) = P(Y (1) = 1 | h(X) = s) ∀s ∈ S

⇒P(Y (0) = 1 | Ŷ = f(s)) = P(Y (1) = 1 | Ŷ = f(s)) ∀f(s) ∈ {0, 1}.

Consequently, causal parity and causal equalized odds will be satisfied. The above result implies

that for a given set of pre-treatment variables X, if conditional causal parity is satisfied, all

other causal fairness criteria discussed in the present work will be satisfied provided that the risk

score function h and the classifier f are a functions of the pre-treatment variables. Conditional

causal parity can be achieved using the imputation technique described in the previous section.

Finally, it is important to note that the above results are based on the assumption that the joint

distribution of variables is known. In practice, factors such as inadequate sample sizes, modelling

choices, hyper-parameter selection, etc. can influence the performance of models across different

groups. In the standard ML setting, previous work has aimed to address some of these limitations

through careful model selection or additional training data collection, etc. [49].

4.5 Computational Results

We consider a stylized hiring scenario to illustrate our causal unfairness evaluation and mitigation

approach. Specifically, we consider a decision-making process that involves two interactions:
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interview and final hiring decision. We study how the timing of the intervention impacts our

conclusions.

We use A to represent gender, which we draw from a Bernoulli distribution Bern(0.75) with the

majority class being male A = 1. An individual’s qualification is described by a random variable X

drawn from a normal distribution N (2α(A−0.5), 1), where α controls the difference in the average

qualifications between genders. Each candidate has a score S reflecting their performance during

the interview. We model the score as a binary variable whose mean depends on the qualifications

and possibly gender. We have P(S = 1) = σ (X + 2β(A− 0.5)) , where σ(z) = 1/(1 + e−z) is the

logistic function and β ≥ 0 determines the level of discrimination in S, e.g., when β > 0 being a

male A = 1 increases one’s probability of receiving a higher score. Subsequently, a decision Y is

made indicating whether the candidate receives an offer or not. We use the probabilistic model

P(Y = 1) = σ (X + S + 2γ(A− 0.5)), with γ ≥ 0 controlling the level of discrimination in Y for a

fixed X,S. The vector of potential outcomes, for both S and Y , can be obtained by substituting

the respective value of A in the model. We present results across a wide range of α, β and γ

values.

According to our causal framework, we need to specify the point in time from which the

effect of gender needs to be assessed. There are two possibilities: after interview is conducted or

before the interview (as one may be concerned about an unfair interview process). Naturally, the

above choice will impact our conclusions about whether the system is fair or not. We generate

100,000 data points (X,A, S(0), S(1), Y (0, S(0)), Y (1, S(1))) according to the process explained

above. For post-interview fairness evaluation we can use the observed S values as the score is a

pre-treatment variable. However, when evaluating fairness before the interview, the score becomes

post-treatment. In order to impute the missing counterfactual score values S(A), we use logistic

regression to model P(S = 1 | X = x, A = a), a ∈ {0, 1}, from which we sample (10 samples).

We use a second logistic regression P(Y = 1 | X = x, S(a) = s,A = a), ∀a, s ∈ {0, 1} to

impute Y (A,S(A)) values. This approach is based on multiple imputation in the causal inference
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Figure 4.2: Synthetic results in the hiring scenario. Colors denote the evaluation method: causal
pre-interview, causal post-interview and statistical. From top to bottom, each row corresponds
to a different value of α ∈ {−0.5, 0, 0.5}. Column are different fairness evaluation criteria. On
the x−axis, we vary the value of β, which reflects the dependence of the interview score on one’s
gender. The y−axis shows fairness violation across four different definitions. We note that for
causal approaches we use the causal variants of the fairness definitions. The value of γ is set to 0.2.
The error bars show 95% confidence interval. Depending on the joint setting of the parameters,
statistical criteria may erroneously result in an over- or under-estimation of fairness violation.
Further, post-interview fairness evaluation does not capture discrimination at earlier points in
time.

literature [161]. We then use these counterfactual values in the expression that evaluates the

treatment effect of A.

We compare our causal criteria against statistical fairness definitions, where we measure the

fairness violation of a logistic regression model trained to predict Y using observed values of X,S

and A. Figure 4.2 depicts a summary of results. We can make several key observations. First,

the post-interview causal plot remains flat across different values of α, β exhibiting a constant

fairness violation at 0.07 due to constant γ = 0.2 which is independent of prior discrimination

in the interview step. This suggests that early discrimination can not be captured when one

chooses a later time as the point of fairness investigation. In other words, any unfairness in the

pre-treatment variables used in the analysis will remain undetected. Pre- and post-interview lines
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only intersect at β = 0 and pre-interview fairness violation increases monotonically with β across

all causal fairness definitions. Statistical fairness definitions exhibit significantly different results.

For example, when α = −0.5, all statistical lines lie below the causal ones which suggests that

they underestimate the true level of discrimination. This is due to the fact that when α < 0, males

qualification is lower than females on average. However, since β, γ > 0 the interview score and

the final decision are in favor of male candidates. Since the statistical criteria fail to disentangle

different sources of disparities, these opposing effects are cancelled, resulting in lower estimates

of unfairness. On the other hand, when α > 0, these effects reinforce each other resulting in

an over-estimation of unfairness. Only when α = 0, do statistical parity and causal parity, in

Causal (Pre), match which indicates the sensitive of statistical criteria to baseline differences

between groups (average qualifications). For β, γ = 0 (no discrimination in interview or the

hiring process), our results indicate near-zero estimates for all causal definitions of fairness across

different values of α. This confirms that it is indeed possible to satisfy different causal fairness

definitions simultaneously, even when there are baseline differences between the qualifications of

different groups. Conversely, statistical criteria yield non-zero estimates except for the case where

α, β, γ = 0 which points to the equal base rate condition highlighted in previous work [110].

Next, we study the power of our approach to mitigate unfairness. We focus on the setting

where α = 0 and β, γ ̸= 0. This is because we aim to remove unfairness in the decision-making

process, which is associated with β and γ. Since statistical approaches are not able to disentangle

different sources of unfairness, by setting α we are able to compare our results against those

criteria. Specifically, we train a model using our approach by imputing the missing potential

outcomes. We compare the accuracy and fairness violation with an unconstrained model (No

Fairness), as well as the same model after applying one of three common unfairness mitigation

algorithms in the literature: pre-processing method (Re-weighting) in [99] which generates weights

for the training examples in each combination of A and Y differently to ensure statistical parity,

in-processing method (PrejudiceRemover) of [102] that adds a regularization term to the learning
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Fairness Violation (Statistical Criteria)

Parity Positive Pred. Parity E-Odds (TP) E-Odds (FP) Acc. (%)
No Fairness 0.31 0.02 0.26 0.21 72.7
Re-weighting 0.10 0.11 0.04 0.03 71.8

PrejudiceRemover 0.16 0.04 0.02 0.24 74.0
RejectOption 0.05 0.19 0.09 0.16 72.0
Causal (Pre) 0.03 0.14 -0.02 -0.04 70.0
Causal (Post) 0.17 0.07 -0.11 -0.09 72.0

Table 4.1: Fairness violation of statistical criteria and the classification accuracy.

objective, and post-processing approach (RejectOption) in [100] which gives favorable outcomes to

unprivileged groups and unfavorable outcomes to privileged groups in a confidence band around

the decision boundary. We rely on the implementations in AI Fairness 360 package [22]. The

training model used in all of the methods is a logistic regression model. For fairness violation, we

consider both statistical criteria and their causal variants.

Table 4.1 summarizes the statistical fairness violation results for β = 1.0 and γ = 0.2. Among

all fair baselines, RejectOption and Causal (Pre) perform significantly better in terms of sta-

tistical parity. Despite the fact that other fair baselines are also designed to remove average

disparities between groups, they still exhibit significant disparities. On the other hand, Rejec-

tOption performs worse than Causal (Pre) with respect to all other criteria. We also note the

difference in pre- and post-interview results. The increase in parity violation in Causal (Post) can

be explained by the fact that it only adjusts for the outcome variable and assumes disparities in

the interview score are acceptable. Disparities in score will in turn result in different outcomes

across groups but in post-interview analysis this effect remains undetected. Finally, in terms of

accuracy, Causal (Post) achieves comparable results to the other methods. The difference in the

accuracy of Causal (Pre) and (Post) is in part due to the fact that the accuracy is measured with

respect to the observed unfair outcomes. As a result, Causal (Pre) which significantly reduces

the gap between female and male candidates may not conform to the historical decisions. Finally,

these results highlight the importance of determining the timing of the intervention. Specifically,

they suggest that through the causal framework, we are able to identify and remove sources of
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Fairness Violation (Causal Criteria)

Parity Positive Pred.
Parity

E-Odds
(TP)

E-Odds
(FP)

Causal (Pre) 0.00 0.00 0.00 0.00
Causal (Post) 0.06 0.02 0.05 0.01

Table 4.2: Fairness violation of causal criteria.

disparities by actively adjusting the affected variables. Finally, we evaluated our approach based

on causal criteria of fairness, choosing pre-interview as the starting time of fairness assessment.

In Table 4.2, we observe no violation of fairness in Causal (Pre) as expected. However, Causal

(post) exhibits small violations which is due to the fact that it only mitigates unfairness due to γ

and in the hiring decision.

4.6 Conclusion and Broader Impact

As empirical evidence on ethical implications of algorithmic decision-making is growing [159, 131,

138, 168], a variety of approaches have been proposed to evaluate and minimize the harms of

these algorithms. In the statistical fairness literature, it is well-established that it is not possible

to satisfy every fairness criterion simultaneously, which results in significant trade-offs in selecting

a metric. On the other hand, in the causal fairness literature, there is substantial ambiguity around

how the proposed methods should be applied to a particular problem. Also, these methods rely

on assumptions that are often too strong to be applicable in practice. In this work, we addressed

some of these limitations.

First, we illustrated the utility of applying concepts from the “potential outcomes framework”

to algorithmic fairness problems. In particular, we emphasized the timing and nature of the

intervention as two key aspects of causal fairness analysis. That is, for any valid causal analysis,

it is critical to precisely define the starting point of the fairness evaluation and the postulated

intervention. We argue that fairness evaluation is not a static problem and unfairness can happen

at various points and within and across multiple domains. This is contrast with methods that
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rely on fixed DAG models. Next, we demonstrated how such a causal framework can address the

limitations of existing approaches. Specifically, our theoretical investigation indicates that there is

an inherent compatibility between the causal fairness definitions we propose. Finally, we showed

the effectiveness of our approach in evaluating and mitigating unfairness associated with different

stages of decision-making. We hope that our empirical observations spark additional work on

collecting new datasets that lend themselves to temporal fairness evaluation.
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Conclusion and Future Work

This thesis identifies and addresses several challenges with respect to designing fair algorithmic

social interventions. The contributions of this thesis are both technical and practical. On a

technical level, this work presents novel computational models that capture real-world complexities

such as data and resource scarcity as well as fairness considerations. Specifically, this thesis

investigates the interplay of fairness with data limitation, data biases and resource scarcity to

develop fair and efficient algorithmic frameworks that solve the resulting optimization models.

From a practical perspective, it contributes different intervention models to prevention and social

sciences. In particular, this work proposes to use social network information to inform gatekeeper

training for suicide prevention and enhance community resilience against natural hazards. It

also presents the first use of quantitative techniques to inform these interventions. Finally, this

work proposes an implementable policy model to allocate scarce housing resources to individuals

experiencing homelessness.

All in all, this thesis covers a subset of challenges in developing effective algorithmic social

interventions and much work remains to be done. Specifically, due to the socio-technical nature

of fairness research, there are several social and legal considerations before any of these solutions

can be deployed. For instance, one question is related to the choice of social groups in the group-

based definitions of fairness. This problem is known as intersectionality fairness which states

that disparities can be amplified in subgroups that combine membership from different categories
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(e.g., race and gender), especially if such a subgroup is particularly under-represented histori-

cally [52, 79]. While the methodologies presented in this work cater for fairness over intersection

of different groups, there is still ambiguity in how these groups should be identified. Individual-

based definitions, on the other hand, are often too restrictive and are not readily applicable to

problems that suffer from resource scarcity as we can not ensure every individual receives a fair

share of resources.

There are also issues with respect to legal compatibility of these solutions. In particular,

U.S. law prohibits policies that differentiate between individuals based on protected attributes

such as race, gender or age [186]. On the other hand, there are exceptions that allow policies

that aim to overcome present disparities of past practices, policies, or barriers by prioritizing

resources for underserved or vulnerable groups. Existing methods typically use the information

about one’s group membership to ensure fair distribution of intervention benefits which may not

be immediately compatible with the legal frameworks. As a result, further research is needed to

ensure the usability of these solutions from the legal perspectives.

There are also issues related to unobserved confounders. When estimating the treatment

effect of different interventions, a common assumption is that all the confounding factors between

treatment and outcome are captured in the data. In observational studies, this assumption is

practically impossible to verify and there is always a threat to its validity. As a result, one avenue

of research could consider robustifying the estimates against such unobserved factors.

Furthermore, due to the context-dependent nature of fairness, re-purposing algorithmic so-

lutions designed for one social context may be misleading or even inaccurate when applied to a

different context. Existing frameworks of fairness also suffer from a lack of expressiveness, i.e.,

they provide point-solutions tailored to a specific context. This thesis aimed to tackle this problem

by presenting two unifying frameworks for fairness: fairness in social-network interventions and

a causal framework for fairness for decision-making under observational data. Even though the

presented frameworks encompass a wide-range of problems, they are not universal. For instance,
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social network-based intervention models with non-submodular utility functions are not handled

by the presented framework and further research is necessary to tackle those problems.
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Appendix A

Technical Appendix to Chapter 2

A.1 Experimental Results in Section 1.6

Data and Data Preprocessing. The original datasets used throughout our paper are described

in detail in [17]. They present 8 racial groups, with each individual belonging to a single group.

To avoid misinterpretation of the results, we collect racial groups with a population < 10% of

the network size N under the “Other” category. The racial composition of the networks after the

preprocessing is provided in Table A.1. For instance, network SPY1 consists of 54% White, 11%

Black, 15% Mixed and 20% Others. The empty entry for Hispanic indicates that their population

was less than 10%; as a result, they are categorized under “Other”.

Network Name White Black Hispanic Mixed Other
SPY1 54 11 – 15 20
SPY2 55 – 11 21 13
SPY3 58 – 10 18 14
MFP1 16 38 22 16 8
MFP2 16 32 22 20 10

Table A.1: Racial composition (%) of the social networks considered after preprocessing

Setting of Parameter W . We now describe in detail the procedure we use to select W in our

experiments. As noted in Section 1.3, to achieve maximin fairness, W must take the maximum

value for which the problem is feasible (fairness constraints satisfied). Its value thus depends on

other parameters, including I, J , and K. In our experiments, we conduct a search to identify
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the best value of W for each setting. Specifically, we vary W from 0 to 1, in increments of 0.04;

we employ the largest W for which the problem is feasible. By construction, this choice of W

guarantees that all of the fairness constraints are satisfied. In Table A.2, we provide the values

of W associated with the results in Table 1.2 for I = N/3 and K = 3 and for each of the values

of J .

Network Name J = 1 J = 2 J = 3 J = 4 J = 5

SPY1 0.44 0.40 0.36 0.32 0.32
SPY2 0.56 0.52 0.48 0.44 0.36
SPY3 0.44 0.36 0.32 0.28 0.24
MFP1 0.52 0.48 0.44 0.40 0.32
MFP2 0.56 0.52 0.44 0.40 0.32

Table A.2: Values of W output by our search procedure and used in the experiments associated
with Table 1.2.

Head-to-Head Comparison with Table 1.1. We conduct a head-to-head comparison

of our approach with the results from Table 1.1 which motivated our work. The results are

summarized in Table A.3. From the table we observe a consistent increase of 8-14% in worst-case

coverage of the worse-off group. For example, in SPY3, the coverage of Hispanics has increased

from 33% to 44%. We can also see that the PoF is moderate, ranging from 1-4.2%. The result

for the MFP1 network suggests a 36% increase in the coverage of the “Other” group. We note that,

by construction, this group consists of racial minorities with a population less than 10% of the

network size. While this increase has impacted the coverage of “majority” groups, the worst-case

coverage of the worse-off group has increased by 14% with a negligible PoF of 2.6%.

A.2 Proof of Statements in Section 1.3

Proof of Lemma 1. For the special case when all monitors are available (Ξ = {e}), there is a

single community (C = 1), and no fairness constraints are imposed (W = 0), Problem (RCfair)

reduces to the maximum coverage problem, which is known to be NP-hard [68]. ■
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Network Name Network Size (N) Worst-case coverage of individuals by racial group (%) PoF (%)
White Black Hispanic Mixed Other

SPY1 95 65 (70) 45 (36) – 79 (86) 88 (94) 3.3
SPY2 117 81 (78) – 50 (42) 72 (76) 73 (67) 1.0
SPY3 118 90 (88) – 44 (33) 85 (95) 87 (69) 4.2
MFP1 165 85 (96) 69 (77) 42 (69) 73 (73) 64 (28) 2.6
MFP2 182 56 (44) 80 (85) 70 (70) 71 (77) 72 (72) 3.4

Table A.3: Reduction in racial discrimination in node coverage resulting from applying our pro-
posed algorithm relative to that of [176] on the five real-world social networks from Table A.1,
when 1/3 of nodes (individuals) can be selected as monitors, out of which at most 10% may
fail. The numbers correspond to the worst-case percentage of covered nodes across all monitor
availability scenarios. The numbers in the parentheses are solutions to the state-of-the-art algo-
rithm [176] (same numbers as in Table 1.1.

a. Original Graph b. With fairness c. Without fairness

Table A.4: Companion figure to Lemma 2. The figures illustrate a network sequence {GN}∞N=5

parameterized by N and consisting of two disconnected clusters: a small and a large one, with 4
and N − 4 nodes, respectively. The small cluster remains intact as N grows. The nodes in the
large cluster form a clique. In the figures, each color (white, grey, black) represents a different
group and we investigate the price of imposing fairness across these groups. The subfigures show
the original graph (a) and an optimal solution when I = 2 monitors can be selected in the cases
(b) when fairness constraints are not imposed and (c) when fairness constraints are imposed,
respectively. It holds that OPTfair(GN , 2, 0) = 4 and OPT(GN , 2, 0) = N − 3 so that the PoF in
GN converges to one as N tends to infinity.

A.3 Proofs of Statements in Section 1.4

In all of our analysis, we assume the graphs are undirected. This can be done without loss of

generality and the results hold for directed graphs.

A.3.1 Worst-Case PoF

Proof of Lemma 2. Let {GN}∞N=5 denote the graph sequence shown in Figure A.4(a) (wherein all

edges are bidirectional). The network consists of three groups (e.g., racial groups) for which fair

treatment is important. Network GN consists of two disjoint clusters: one involving four nodes
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and a bigger clique containing the remaining (N − 4) nodes. Suppose that we can choose I = 2

nodes as monitors and that all of them are available (J = 0). Observe that Problem (RCfair) is

feasible only if 0 ≤W ≤ (N − 3)−1. For W = (N − 3)−1, the optimal solution places both nodes

in the smaller cluster, see Figure A.4(b). This way, at least one node from each group is covered.

The total coverage for the fair solution is then equal to OPTfair(GN , 2, 0) = 4. The maximum

achievable coverage under no fairness constraints, however, is obtained by placing one monitor in

each cluster, see Figure A.4(c). Thus, the total coverage is equal to OPT(GN , 2, 0) = N − 3. As

a result, PoF(GN , 2, 0) = 1− 4(N − 3)−1 and for N ≥ 4/ϵ+3, it holds that PoF(GN , 2, 0) ≥ 1− ϵ.

The proof is complete. ■

A.3.2 Supporting Results for the PoF Derivation

In this section, we provide the preliminary results needed in the derivation of the PoF for both the

deterministic and robust graph covering problems. First, we provide two results (Lemmas 4 and 5)

from the literature which characterize the maximum degree, as well as the expected number of

maximum-degree nodes in sparse Erdős Rény graphs [65, 80]. We note that in SBM graphs which

are used in our PoF analysis, each community c ∈ C, when viewed in isolation, is an instance of the

Erdős Rényi graph, in which each edge exists independently with probability pin
c . These results

are useful to evaluate the coverage of each community c ∈ C under the sparsity Assumption 1.

Specifically, they enable us to show in Lemma 6 that, in sparse Erdős Rényi graphs, the coverage

can be evaluated approximately as the sum of the degrees of the monitoring nodes. Thus, the

maximum coverage within each community in an SBM network can obtained by selecting the

maximum degree nodes. Lastly, we prove Lemma 8 which will be useful to show that coverage

from monitoring nodes in other communities in SBM networks is negligible.

In what follows, we use GN,p to denote a random instance of Erdős Rény graphs on vertex

set N (= {1, . . . , N}), where each edge occurs independently with probability p. Following the

notational conventions in [75], we will say that a sequence of events {An}Nn=1 occurs with high
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probability if limn→∞ P(An) = 1 and, given a graph G, we let ∆(G), the maximum degree of

vertices of G.

Theorem 4 ([75, Theorem 3.4]). Let {GN,p}∞N=1 a sequence of graphs. If p = Θ(N−1), then with

high probability

lim
N→∞

∆(GN,p) =
logN

log logN
.

Lemma 5. Let {GN,p}∞N=1 a sequence of graphs with p = Θ(N−1). Let σ(N) := logN(log logN)−1.

Then, it holds that

E[Xσ(N)(GN,p)] ≥ N
log log log N−o(1)

log log N ,

where Xσ(N)(GN,p) is the number of vertices of degree σ(N) in GN,p.

Proof. We borrow results from [75, Theorem 3.4], where the authors show that

E[Xσ(N)(GN,p)] = exp

(
logN

log logN
(log log logN − o(1)) +O

(
logN

log logN + 2 log log logN

))
,

We further simplify the expression in Lemma 5 by eliminating the O(.) term and we obtain

E[Xσ(N)(GN,p)] ≥ N
log log log N−o(1)

log log N ,

■

Lemma 5 ensures that our budget for selecting monitors I = O(logN), is (asymptotically)

smaller than number of nodes with degree ∆(GN,p).

Lemma 6. Let {GN,p}∞N=1 be a sequence of graphs with p = Θ(N−1). Suppose that the number

of monitors is I = O(logN). Then, for all ν, there exists a graph GN,p such that the difference
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between the expected maximum coverage in GN,p and the expected number of neighbors of the

monitoring nodes is bounded. Precisely, if x(GN,p) is the indicator vector of the highest degree

nodes in GN,p, we have

∑
n∈N

E
[
xn(GN,p)|δGN,p

(n)|
]
− E

[
FGN,p

(x(GN,p), e)
]
≤ ν,

where δGN,p
(n) is the set of neighbors of n in GN,p and ν is the error term and it is ν = o(1).

Proof. Let Yn be the event that node n is covered. Also, let Zi
n the event that node n is covered

by the ith highest degree node (and by potentially other nodes too). Without loss of generality,

assume that the nodes with lower indexes have higher degrees, i.e., |δ(1)| ≥ · · · ≥ |δ(N)|. The

probability that node n is covered can be written as

P(Yn) = P
(
∪Ii=1Z

i
n

)
. (A.1)

From the Bonferroni inequalities, we have

P(∪Ii=1Z
i
n) ≥

I∑
i=1

P(Zi
n)−

I∑
j=i

P(Zi
n ∩ Zj

n)

 (A.2)

and

P(∪Ii=1Z
i
n) ≤

I∑
i=1

P(Zi
n). (A.3)

Define Y :=
∑N

i=1 Yn as the (random) total coverage. With a slight abuse of notation, we view

Yn and Zi
n as Bernoulli random binary variables that are equal to 1 if and only if the associated

event occurs. As a result, we can substitute the probability terms with their expected values.

Combining Equations (A.1), (A.2) and (A.3), we obtain

I∑
i=1

E[Zi
n]−

I∑
j=i

E[Zi
nZ

j
n]

 ≤ E[Yn] ≤
I∑

i=1

E[Zi
n], ∀n ∈ N ,
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where we used the fact that P(Zi
n∩Zj

n) = P(Zi
n)P(Z

j
n) = E(Zi

n)E(Z
j
n) = E(Zi

nZ
j
n) by independence

of the events Zi
n and Zj

n. Summing over all n yields

∑
n∈N

 I∑
i=1

E[Zi
n]−

I∑
j=i

E[Zi
nZ

j
n]

 ≤
∑
n∈N

E[Yn] ≤
∑
n∈N

I∑
i=1

E[Zi
n].

Changing the order of the summations, it follows that

I∑
i=1

∑
n∈N

E[Zi
n]−

I∑
j=i

∑
n∈N

E[Zi
nZ

j
n]

 ≤ E[Y ] ≤
I∑

i=1

∑
n∈N

E[Zi
n],

where we have used E[Y ] =
∑N

i=1 E[Yn]. By definition of δGN,p
(i), since xi(GN,p) = 1 for i =

1, . . . , I, it holds that the number of nodes covered by node i,
∑

n∈N E[Zi
n] = E[|δGN,p

(i)|]. Also,

we remark that E[Y ] = E[FGN,p
(x(GN,p), e)]. Thus, the above sequence of inequalities is equivalent

to
I∑

i=1

E[|δGN,p
(i)|]−

I∑
j=i

∑
n∈N

E[Zi
nZ

j
n]

 ≤ E[FGN,p
(x(GN,p), e)] ≤

I∑
i=1

E[|δGN,p
(i)|],

where, by reordering terms, we obtain

0 ≤
I∑

i=1

E[|δGN,p
(i)|]− E[FGN,p

(x(GN,p), e)] ≤
I∑

i=1

I∑
j=i

∑
n∈N

E[Zi
nZ

j
n].

Note that E [xn(GN,p)] = 1,∀n ≤ I since by assumption the nodes are ordered by decreasing order

of their degree, so the nodes indexed from 1 to I are selected in each realization of the graph.

Thus,
I∑

i=1

E[|δGN,p
(i)|] =

∑
n∈N

E [xn(GN,p)]E
[
|δGN,p

(n)|
]

=
∑
n∈N

E
[
xn(GN,p)|δGN,p

(n)|
]
,
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which yields

∑
n∈N

E
[
xn(GN,p)|δGN,p

(n)|
]
− E[FGN,p

(x(GN,p), e)] ≤
I∑

i=1

I∑
j=i

∑
n∈N

E[Zi
nZ

j
n]. (A.4)

The right-hand side of Equation (A.4) is the error term. We denote this term by ν. This error

term determines the difference between the true value of the coverage and the expected sum of

the degrees of the monitoring nodes. Given that p = Θ(N−1), we can precisely evaluate the error

term. First, we note that since in the Erdős-Rényi model edges are drawn independently, we can

write E[Zi
nZ

j
n] = E[Zi

n]E[Z
j
n]. Using Theorem 4 and Lemma 5, and given that the monitors are

the highest degree nodes in any realization of the graph, we can write

E[Zi
n] = E[Zj

n] = Θ

(
1

N

logN

log logN

)
.

We thus obtain

ν = Θ

(
I2

N

(
logN

log logN

)2
)
.

By the assumption on the order of I, it follows that limN→∞ ν = 0, which concludes the proof. ■

We now prove the following lemma which will be used in proof of the subsequent results.

Lemma 7. Let Xi for i = 1, . . . , Q be Q i.i.d samples from normal distribution with mean µ and

standard deviation σ. Also, let Z = maxi∈{1,··· ,Q} Xi. It holds that

E[Z] ≤ µ+ σ
√

2 logQ.
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Proof. By Jensen’s inequality,

exp(tE[Z]) ≤ E[exp(tZ)] = E[exp(t max
i=1,...,Q

Xi)]

≤
Q∑
i=1

E[exp(tXi)]

= Q exp(µt+ t2σ2/2),

where the last equality follows from the definition of the Gaussian moment generating function.

Taking the logarithm of both sides of this inequality, we can obtain

E[Z] ≤ µ+
logQ

t
+

tσ2

2
.

For the tightest upper-bound, we set t =
√
2 logQ/σ. Thus, we obtain

E[Z] ≤ µ+ σ
√

2 logQ.

■

Lemma 8. Consider BN,M,p to be a random instance of a bipartite graph on the vertex set N =

L ∪ R, where N = |R ∪ L| and M := |R| and p = O
(
(M log2 M)−1

)
is the probability that each

edge exists (independently). Suppose that monitoring nodes can only be chosen from the set L and

that at most I monitors can be selected. Then, it holds that

E

 max
x∈{0,1}|L|:∑

n∈L xn=I

FBN,M,p
(x, e)

 = IO

(
1

log2 M

)
.

Proof. We note that the degree of node i, δBN,M,p
(i), follows a binomial distribution with mean

Mp. Given we are interested in N,M → ∞, we can approximate the binomial distribution with
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a normal distribution [184] with mean Mp and standard deviation
√
Mp(1− p). Using the result

of Lemma 7, we obtain

E[∆BN,M,p
] = O

(
Mp+

√
Mp(1− p)

√
2 log (N −M)

)
= O(Mp).

Using the above result combined with the assumption on p, we can bound the expected maximum

degree of B.

E[∆BN,M,p
] = O

(
1

log2 M

)
.

As a result, the maximum expected coverage of the I monitoring nodes is upper-bounded as

E

 max
x∈{0,1}N :∑

n∈L xn=I

FBN,M,p
(x, e)

 ≤ I E[∆BN,M,p
] = IO

(
1

log2 M

)
.

and the proof is complete. ■

A.3.3 PoF in the Deterministic Case

Next, we prove the main result which is the derivation of the PoF for the deterministic graph

covering problem. The idea of the proof is as follows: by Lemmas 5 and 6, we are able to

evaluate the coverage of each community. By Lemma 8, we upper bound the between-community

coverage. In other words, based on Lemma 8, we conclude that in every instance of the coverage

problem, the between-community coverage is zero (asymptotically) with high probability. Thus,

the allocation of monitoring nodes is only dependant on the within-community coverage. Using

this observation, we can determine the allocation of the monitors both in the presence and absence

of fairness constraints. Subsequently, we are able to evaluate the coverage in both cases. PoF can

be then computed based on these two quantities, see Equation (1.2).
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Proof of Proposition 1. Let SN be a random instance of the SBM network with size N . Consider

s(SN ) ∈ ZC to be the number of allocated monitoring nodes to each of the C communities, i.e.,

sc(SN ) =
∑

n∈Nc
xn(SN ). Using the result of Lemmas 6 and 8, we can measure the expected

maximum coverage as

lim
N→∞

E[OPT(SN , I, 0)] = lim
N→∞

E

[
max

x(SN )∈X
FSN

(x, e)
]
= E

[
lim

N→∞
max

x(SN )∈X
FSN

(x, e)
]
,

where the last equality is obtained by exchanging the expectation and limit. Using Lemma 4 and

since the maximum degree is convergent to d(c), we can exchange the limit and maximization

term. Thus, we will have

E

[
lim

N→∞
max

x(SN )∈X
FSN

(x, e)
]

= E

[
max

x(SN )∈X
lim

N→∞
FSN

(x, e)
]

= E

[
max

s(SN )∈ZC

∑
c∈C

sc(SN )d(c) + o(1)

]
,

which given that d(c) is only dependent on the size of the communities in SN is equivalent to

lim
N→∞

E[OPT(SN , I, 0)] = max
s(SN )

∑
c∈C

sc(SN )d(c) + o(1). (A.5)

Equation (A.5) suggests that for large enough N , the maximum coverage is only dependent on

the number of the monitoring nodes allocated to each community. Also, the allocation is the

same for all random instances so we can drop the dependence of s on SN . In right-hand side of

Equation (A.5), the first term is the within-community (Lemma 6), and the second term is the

between-community (Lemma 8) coverage.

In the analysis below, all the evaluations are for large enough N . Therefore, we drop the

limN→∞ for ease of notation. According to Equation (A.5) the between-community coverage

is negligible, compared to the within-community coverage. This suggests that the maximum
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achievable coverage will be obtained by placing all the monitoring nodes in the largest community,

with the largest value of d(c), where the assumption on I, as given in the premise of the proposition,

combined with Lemma 5 guarantee that such a selection is possible. Thus, we obtain

E[OPT(SN , I, 0)] = Id(C) + o(1).

Next, we measure E[OPTfair(.)], where in addition to optimization problem in Equation (A.5),

the allocation is further restricted to satisfy all the fairness constraints.

sc
|Nc|

d(c) + o(1) ≥W ∀c ∈ C, (A.6)

in which, o(1) is the term that compensates for the coverage of the nodes in other communities,

and is small due to the regimes of pout
cc′ , ∀c, c′ ∈ C and the budget I. At optimality and for the

maximum value of W , we have

∣∣∣sc|Nc|−1
d(c)− sc′ |Nc′ |−1

d(c′)
∣∣∣ ≤ δ ∀c, c′ ∈ C, δ ≤

∣∣∣d(1)|N1|−1 − d(C)|NC |−1
∣∣∣ .

This holds because otherwise one can remove on node from the group with higher value of

sc|Nc|−1
d(c) to a group with less value and thus increase the normalized coverage of the worse-off

group and this contradicts the fact that W is the maximum possible value. This suggests that

in a fair solution, the normalized coverage is almost equal across different groups, given that

limN→∞ δ = 0. As a result, the monitoring nodes should be such that

W ≤ sc
|Nc|

d(c) + o(1) ≤W + δ, ∀c ∈ C.

From this, it follows that

W − o(1) ≤ sc
|Nc|

d(c) ≤W + o(1). (A.7)
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By assumption, there must be an integral sc that satisfies the above relation. Note that if we

could relax the integrality assumption, sc = W |Nc|d(c)−1. Due to the integrality constraint, and

according to Equation (A.7), we set sc|Nc|−1
d(c) = W + o(1), where the o(1) term is to account

for the discretizing error, which results in sc = W |Nc|d(c)−1 +O(1), where O(1) ≤ 1 (As we can

not make a higher error in rounding). Also, since
∑

c∈C sc = I, we can obtain the value of W as

W =
I∑

c∈C
|Nc|
d(c)

+ o(1).

As a result

sc =
I∑

c∈C
|Nc|
d(c)

|Nc|
d(c)

+O(1) ∀c ∈ C.

We now define κ := I
(∑

c∈C
|Nc|
d(c)

)−1

for a compact representation.
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So far, we obtained the allocation of the monitoring nodes to satisfy the fairness constraints.

This is enough to evaluate the coverage under the fairness constraints. Now, we can evaluate the

PoF as defined by Equation (1.2).

E[OPT(SN , I, 0)] = Id(C)

⇒ − 1

E[OPT(SN , I, 0)]
= − 1

I d(C)

⇒ −E[OPTfair(SN , I, 0)]

E[OPT(SN , I, 0)]
= −

κ
∑

c∈C
|Nc|
d(c) d(c)

I d(C)
−o(1)

⇒ 1− E[OPTfair(SN , I, 0)]

E[OPT(SN , I, 0)]
= 1−

κ
∑

c∈C
|Nc|
d(c) d(c)

I d(C)
− o(1)

⇒ PoF(I, 0) = 1−
κ
∑

c∈C |Nc|
I d(C)

− o(1)

⇒ PoF(I, 0) = 1−
∑

c∈C |Nc|∑
c∈C |Nc|d(C)/d(c)

− o(1).

■

A.3.4 PoF in the Robust Case

Proof of Proposition 2. The idea of the proof is similar to Proposition 1, with the exception that

the fair allocation of the monitoring nodes will be affected by the uncertainty. Consider s to be

the number of allocated monitoring nodes to each of the C communities, i.e., sc =
∑

n∈Nc
xn.

Using the result of lemma 6, and 8, we can measure the expected maximum coverage as

E[OPT(SN , I, J)] = (I − J)d(c) + o(1).
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That is because, in the worst-case J nodes fail, thus only (I − J) nodes can cover the graph.

Next, we measure E[OPTfair(.)], where in addition to optimization problem in Equation (A.5),

the allocation is further restricted to satisfy all the fairness constraints. Given that at most J

nodes may fail, we need to ensure after fairness constraints are satisfied after the removal of J

nodes. We momentarily revisit the fairness constraint in the deterministic case.

sc
|Nc|

d(c) + o(1) ≥W ∀c ∈ C,

in which, o(1) is the term that compensates for the coverage of the nodes in other communities,

and is small due to the regimes of pout, and the budget I. Under the uncertainty, we need to

ensure that these constraints are satisfied even after J nodes are removed. In other words

(sc − J)

|Nc|
d(c) + o(1) ≥W ∀c ∈ C.

At optimality and for the maximum value of W , we have

∣∣∣(sc − J)|Nc|−1
d(c)− (sc′ − J)|Nc′ |−1

d(c′)
∣∣∣ ≤ δ ∀c, c′ ∈ C, δ ≤

∣∣∣d(1)|N1|−1 − d(C)|NC |−1
∣∣∣ .

This holds because otherwise one can remove on node from the group with higher value of

sc|Nc|−1
d(c) to a group with less value and thus increase the normalized coverage of the worse-off

group and this contradicts the fact that W is the maximum possible value.

This suggests that in a fair solution, the normalized coverage is almost equal across different

groups, given that δ → 0, as Nc →∞,∀c ∈ C. Following the proof of Proposition 1, the discretizing

error can be handled by setting (sc−J)|Nc|−1
d(c) = W + o(1), where the o(1) term is to account

for the discretizing error. As a result

sc =
|Nc|W
d(c)

+ J +O(1),
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where O(1) ≤ 1 (As we can not make a higher error in rounding). This suggests that a fair

allocation is the one that places J nodes in each community, regardless of the community size.

The remaining monitors are allocated with respect to the relative size of the communities.

Summing over all sc and since
∑

c∈C sc = I we obtain

W =
(I − CJ)∑

c∈C
|Nc|
d(c)

+ o(1).

As a result

sc =
(I − CJ)∑

c∈C
|Nc|
d(c)

|Nc|
d(c)

+ J +O(1) ∀c ∈ C.

As defined in the premise of the proposition, η = (I − CJ)
(∑

c∈C
|Nc|
d(c)

)−1

.

So far, we obtained the allocation of the monitoring nodes, to satisfy the fairness constraints.

Now, we evaluate the coverage, i.e., objective value of Problem (RCfair), under the obtained

fair allocation. Since the fairness constraints are satisfied under all the scenarios, the worst-case

scenario is the one that results in the maximum loss in the total coverage. This corresponds to

the case that J nodes from the largest community (NC) fail. As a result the expected coverage

can be obtained by

E[OPTfair(SN , I, J)] =
∑
c∈C

(
η
|Nc|
d(c)

d(c) + Jd(c) +O(1)d(c)

)
− Jd(C).

Now, we can evaluate the PoF as defined by Equation (1.2).

E[OPT(SN , I, J)] = (I − J)d(C)

⇒ − 1

E[OPT(SN , I, J)]
= − 1

(I − J)d(C)

⇒ −E[OPTfair(SN , I, J)]

E[OPT(SN , I, J)]
= −

∑
c∈C (η|Nc|+ Jd(c))− Jd(C)

(I − J)d(C)
− o(1)

⇒ 1− E[OPTfair(SN , I, J)]

E[OPT(SN , I, J)]
= 1−

∑
c∈C η|Nc|+

∑
c∈C\{C} Jd(c)

(I − J)d(C)
− o(1)

⇒ PoF(I, J) = 1−
∑

c∈C η|Nc|
(I − J)d(C)

−
J
∑

c∈C\{C} d(c)

(I − J)d(C)
− o(1).
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■

A.4 Proofs of Statements in Section 1.5

A.4.1 Equivalent Reformulation as a Max-Min-Max Optimization

Proof of Proposition 3. Let x̄ be feasible in Problem (RCfair). It follows that it is also feasible in

Problem 1.3. For a fixed ξ̄, we show that

∑
c∈C

FG,c(x̄, ξ̄) = max
y

∑
c∈C

∑
n∈Nc

yn

s.t. yn ≤
∑

ν∈δ(n)

ξ̄νx̄ν

∑
n∈C

yn ≥W |Nc|, ∀c ∈ C

Since x̄ is feasible in Problem (RCfair), it holds that

FG,c(x̄, ξ̄) =
∑
n∈Nc

yn(x̄, ξ̄)

=
∑
n∈Nc

I

 ∑
ν∈δ(n)

ξ̄νx̄ν ≥ 1



≥ W |Nc|

We define y⋆
n = I

(∑
ν∈δ(n) ξ̄νx̄ν ≥ 1

)
which is feasible in Problem (1.3). Since the choice of

ξ̄ was arbitrary, we showed that given a solution to Problem (RCfair), we can always construct a

feasible solution to Problem (1.3), thus the objective value of the latter is at least as high.
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We now prove the contrary, i.e., given a solution to Problem (1.3), we will construct a solution

to Problem (RCfair). Consider x̄ to be an optimal solution to Problem (RCfair). Suppose there

exists ξ̄ ∈ Ξ such that

FG,c(x̄, ξ̄) < |Nc|W

⇒
∑
n∈Nc

I

 ∑
ν∈δ(n)

ξ̄νx̄ν ≥ 1

 < |Nc|W.

However, since x̄ is feasible in Problem (RCfair), we have that

∀ξ̃ ∈ Ξ, ∃yn : yn ≤
∑

ν∈δ(n)

ξ̃νx̄ν

∑
n∈Nc

yn ≥ |Nc|W.

By construction, yn ≤ I
(∑

ν∈δ(n) ξ̃νx̄ν ≥ 1
)
, ∀n ∈ N . Thus

∑
c∈C

∑
n∈Nc

I

 ∑
ν∈δ(n)

ξ̃νx̄ν ≥ 1

 ≥
∑
c∈C

∑
n∈Nc

yn

≥ |Nc|W.

According to the above result, we showed that the optimal objective value of Problem (RCfair) is

at least as high as that of Problem (1.3). This completes the proof. ■
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A.4.2 Exact MILP Formulation of the K-Adaptability Problem

In order to derive the equivalent MILP in Theorem 1, we start by a variant of the K-adaptability

Problem (1.4), in which we move the constraints of the inner maximization problem to the defini-

tion of the uncertainty set in the spirit of [84]. Next, we prove, via Proposition 12, that by relaxing

the integrality constraint on the uncertain parameters ξ, the problem remains unchanged, and this

is the key result that enables us to provide an equivalent MILP reformulation for Problem (1.4).

We replace Ξ with a collection of uncertainty sets parameterized by vectors ℓ ∈ L as in [84].

Specifically, it follows from Proposition 2 in [84] that Problem (1.4) is equivalent to

max min
ℓ∈L

min
ξ∈Ξ(x,y,ℓ)

max
k∈K:
ℓk=0

∑
n∈N

yk
n

s.t. x ∈ X , y1, . . . ,yK ∈ Y,

(A.8)

where Ξ(x,y, ℓ) is defined through

Ξ(x,y, ℓ) :=


ξ ∈ Ξ :

yk
ℓk

>
∑

ν∈δ(ℓk)

ξνxν , ∀k ∈ K : ℓk > 0

yk
n ≤

∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : ℓk = 0


,

and, with a slight abuse of notation, we use y := {y1, . . . ,yK}. The vector ℓ ∈ L encodes which

of the K candidate covering schemes are feasible. By introducing ℓ, the constraints of the inner

maximization problem are absorbed in the parameterized uncertainty sets Ξ(x,y, ℓ), and in the

inner-most maximization problem, any covering scheme can be chosen for which ℓk = 0.
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Note that, for any fixed x ∈ X , y ∈ YK , and ℓ ∈ L, the strict inequalities in Ξ(x,y, ℓ) can be

converted to (loose) inequalities as in

Ξ(x,y, ℓ) =


ξ ∈ Ξ :

yk
ℓk
≥

∑
ν∈δ(ℓk)

ξνxν + 1, ∀k ∈ K : ℓk > 0

yk
n ≤

∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : ℓk = 0


.

This idea was previously leveraged in [154]. It follows naturally since all decision variables and

uncertain parameters are binary. Next, we show that we can obtain an equivalent problem by

relaxing the integrality constraint on the set Ξ in the definition of Ξ(x,y, l). Consider the following

problem

max min
ℓ∈L

min
ξ∈Ξ(x,y,ℓ)

max
k∈K:
ℓk=0

∑
n∈N

yk
n

s.t. x ∈ X , y ∈ YK ,

(A.9)

where the uncertainty set is obtained by relaxing the integrality constraints on ξ, i.e.,

Ξ(x,y, ℓ) =


ξ ∈ T :

yk
ℓk
≥

∑
ν∈δ(ℓk)

ξνxν + 1, ∀k ∈ K : ℓk > 0

yk
n ≤

∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : ℓk = 0


.

Proposition 12. Under Assumption 3, Problems (A.8) and (A.9) are equivalent.
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Proof. Let x ∈ X , y ∈ YK , and ℓ ∈ L. It suffices to show that

min
ξ∈Ξ(x,y,ℓ)

max
k∈K:
ℓk=0

∑
n∈N

yk
n and min

ξ∈Ξ(x,y,ℓ)
max
k∈K:
ℓk=0

∑
n∈N

yk
n

are equivalent. Observe that the these problems have the same objective function. Thus, the two

problems have the same optimal objective value if and only if they are either both feasible or

both infeasible. As a result, it suffices to show that Ξ(x,y, ℓ) is empty if and only if Ξ(x,y, ℓ)

is empty. Naturally, if Ξ(x,y, ℓ) = ∅ then Ξ(x,y, ℓ) = ∅ since T is the linear programming

relaxation of Ξ. Thus, it suffices to show that the converse also holds, i.e., that if Ξ(x,y, ℓ) ̸= ∅,

then also Ξ(x,y, ℓ) ̸= ∅.

To this end, suppose that Ξ(x,y, ℓ) ̸= ∅ and let ξ̃ ∈ Ξ(x,y, ℓ). Then, ξ̃ is such that

ξ̃ ∈ T ,

yk
ℓk
≥

∑
ν∈δ(ℓk)

ξ̃νxν + 1 ∀k ∈ K : ℓk > 0,

yk
n ≤

∑
ν∈δ(n)

ξ̃νxν ∀n ∈ N , ∀k ∈ K : ℓk = 0.

(A.10)

Next, define ξ̂n := ⌈ξ̃n⌉ ∀n ∈ N . We show that ξ̂ ∈ Ξ(x,y, ℓ). First, note that ξ̂ ≥ ξ̃ and by

Assumption 3, it follows that ξ̂ ∈ T . Moreover, by construction, ξ̂ ∈ {0, 1}N . Thus, it follows
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that ξ̂ ∈ Ξ. Next, we show that the constructed solution ξ̂ also satisfies the remaining constraints

in Ξ(x,y, ℓ). Fix k ∈ K such that ℓk > 0. Then, from (A.10) it holds that

yk
ℓk
≥

∑
ν∈δ(ℓk)

ξ̃νxν + 1

⇒ yk
ℓk

= 1 and ξ̃νxν = 0 ∀ν ∈ δ(ℓk)

⇒ yk
ℓk

= 1 and ξ̃ν = 0 ∀ν ∈ δ(ℓk) : xν = 1

⇒ yk
ℓk

= 1 and ξ̂ν = 0 ∀ν ∈ δ(ℓk) : xν = 1

⇒ yk
ℓk
≥

∑
ν∈δ(ℓk)

ξ̂νxν + 1,

where the first and second implication follow since y and x are binary, respectively, and the third

implication holds by definition of ξ̂,

Next, fix k ∈ K such that ℓk = 0. Then, (A.10) yields

yk
n ≤

∑
ν∈δ(n)

ξ̃νxν ∀n ∈ N

⇒ yk
n ≤

∑
ν∈δ(n)

ξ̂νxν ∀n ∈ N ,

which follows by definition of ξ̂. We have thus constructed ξ̂ ∈ Ξ(x,y, ℓ) and therefore conclude

that Ξ(x,y, ℓ) ̸= ∅. Since the choice of x ∈ X , y ∈ YK , and ℓ ∈ L was arbitrary, the claim

follows. ■

Proposition 12 is key to leverage existing literature to reformulate Problem (1.4) as an MILP.

The reformulation is based on [84, 154].
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Proof of Theorem 1. Note that the objective function of the Problem (A.8) is identical to

min
ℓ∈L

min
ξ∈Ξ(x,y,ℓ)

[
max

λ∈∆K(ℓ)

∑
k∈K

λk

∑
n∈N

yk
n

]
,

where ∆K(ℓ) := {λ ∈ RK
+ : e⊤λ = 1, λk = 0 ∀k ∈ K : ℓk ̸= 0}. We define ∂L := {ℓ ∈ L : ℓ ≯ 0},

and L+ := {ℓ ∈ L : ℓ > 0}. We remark that ∆K(ℓ) = ∅ if and only if ℓ > 0. If Ξ(x,y, ℓ) = ∅ for

all ℓ ∈ L+, then the problem is equivalent to

min
ℓ∈∂L

min
ξ∈Ξ(x,y,ℓ)

[
max

λ∈∆K(ℓ)

∑
k∈K

λk

∑
n∈N

yk
n

]
.

By applying the classical min-max theorem, we obtain

min
ℓ∈∂L

max
λ∈∆K(ℓ)

min
ξ∈Ξ(x,y,ℓ)

∑
k∈K

λk

∑
n∈N

yk
n.

This problem is also equivalent to

max
λ(ℓ)∈∆K(ℓ)

min
ℓ∈∂L

min
ξ∈Ξ(x,y,ℓ)

∑
k∈K

λk(ℓ)
∑
n∈N

yk
n.

If on the other hand Ξ(x,y, ℓ) ̸= ∅ for some ℓ ∈ L+, the objective of Problem (A.8) evaluates to

−∞.
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Using the above results, we can write Problem (A.8) in epigraph form as

max τ

s.t. x ∈ X , y ∈ YK , τ ∈ R, λ(ℓ) ∈ ∆K(ℓ), ℓ ∈ ∂L

τ ≤
∑
k∈K

λk(ℓ)
∑
n∈N

yk
n ∀ℓ ∈ ∂L : Ξ(x,y, ℓ) ̸= ∅

Ξ(x,y, ℓ) = ∅ ∀ℓ ∈ L+.

(A.11)

We begin by reformulating the semi-infinite constraint associated with ℓ ∈ ∂L in Problem (A.11).

To this end, fix ℓ ∈ ∂L and consider the linear program

min 0

s.t. 0 ≤ ξn ≤ 1 ∀n ∈ N

A⊤ξ ≥ b

yk
ℓk
≥

∑
ν∈δ(ℓk)

ξνxν + 1 ∀k ∈ K : ℓk > 0

yk
n ≤

∑
ν∈δ(n)

ξνxν ∀n ∈ N , ∀k ∈ K : ℓk = 0,
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whose dual reads

max −e⊤θ(ℓ) + b⊤α(ℓ)−
∑
k∈K
ℓk ̸=0

(
yk
ℓk
− 1

)
νk(ℓ) +

∑
k∈K
ℓk=0

∑
n∈N

yk
nβ

k
n(ℓ)

s.t. θ(ℓ) ∈ RN
+ , α(ℓ) ∈ RR

+, β
k(ℓ) ∈ RN

+ , ∀k ∈ K, ν(ℓ) ∈ RK
+

θn(ℓ) ≤ A⊤α(ℓ) +
∑
k∈K
ℓk ̸=0

∑
ν∈δ(ℓk)

xννk(ℓ)−
∑
k∈K
ℓk=0

∑
ν∈δ(n)

xνβ
k
n(ℓ) ∀n ∈ N .

In Problem (A.11) the constraint associated with each ℓ ∈ ∂L is satisfied if and only if the

objective value of the above dual problem is greater than τ −
∑

k∈K λk(ℓ)
∑

n∈N yk
n. This follows

since the dual is always feasible. Therefore, either the dual is unbounded in which case the primal

is infeasible, i.e., Ξ(x,y, ℓ) = ∅, and the constraint is trivial. Else, by strong duality, the primal

and dual must have the same objective value (zero). As a result, the constraints in Problem (A.11)

associated with each ℓ ∈ ∂L can be written as

τ ≤ −e⊤θ(ℓ) + b⊤α(ℓ)−
∑
k∈K
ℓk ̸=0

(
yk
ℓk
− 1

)
νk(ℓ) +

∑
k∈K
ℓk=0

∑
n∈N

yk
nβ

k
n(ℓ) +

∑
k∈K

λk(ℓ)
∑
n∈N

yk
n

θn(ℓ) ≤ A⊤α(ℓ) +
∑
k∈K
ℓk ̸=0

∑
ν∈δ(ℓk)

xννk(ℓ)−
∑
k∈K
ℓk=0

∑
ν∈δ(n)

xνβ
k
n(ℓ) ∀n ∈ N .
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Finally, the last constraint in Problem (A.11) is satisfied if the linear program

min 0

s.t. 0 ≤ ξn ≤ 1 ∀n ∈ N

Aξ ≥ b

yk
ℓk
≥

∑
ν∈δ(ℓk)

ξνxν + 1 ∀k ∈ K : ℓk ̸= 0

is infeasible. Using strong duality, this occurs if the dual problem

max −e⊤θ(l) +α(ℓ)⊤b−
∑
k∈K
ℓk ̸=0

(
yk
ℓk
− 1

)
νk(ℓ)

s.t. θ(ℓ) ∈ RN
+ , α(ℓ) ∈ RR

+, ν(ℓ) ∈ RK
+

θn(ℓ) ≤ A⊤α(ℓ) +
∑
k∈K
ℓk ̸=0

∑
ν∈δ(ℓk)

xννk(ℓ) ∀n ∈ N

is unbounded. Since the feasible region of the dual problem constitutes a cone, the dual problem

is unbounded if and only if there is a feasible solution with an objective value of 1 or more. ■

A.5 Bender’s Decomposition

We do not detail all the steps of the Bender’s decomposition algorithm. We merely provide the

initial relaxed master problem and the subproblems used to generate the cuts. We refer the reader

to e.g., [37] for more details.
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Relaxed Master Problem. Initially, the relaxed master problem only involves the binary

variables of the Problem (1.5) and is expressible as

max
{
τ : τ ∈ R, x ∈ X , y1, . . . ,yK ∈ Y

}
.

Subproblems. As discussed in Section 1.5, Problem (1.5) decomposes by ℓ. Depending on

the index ℓ of the subproblem, there are two types of subproblems to consider. If ℓ ∈ L0, the

subproblem is given by

min 0

s.t. θ(ℓ), βk(ℓ) ∈ RN
+ , α(ℓ) ∈ RR

+, ν(ℓ) ∈ RK
+ , λ(ℓ) ∈ ∆K(ℓ)

τ ≤ −e⊤θ(ℓ) + b⊤α(ℓ)−
∑
k∈K:
ℓk ̸=0

(
yk
ℓk
− 1

)
νk(ℓ) + . . .

. . .+
∑
k∈K:
ℓk=0

∑
n∈N

yk
nβ

k
n(ℓ) +

∑
k∈K

λk(ℓ)
∑
n∈N

yk
n

θn(ℓ) ≤ A⊤α(ℓ) +
∑
k∈K
ℓk ̸=0

∑
ν∈δ(lk)

xννk(ℓ)−
∑
k∈K
ℓk=0

∑
ν∈δ(n)

xνβ
k
n(ℓ) ∀n ∈ N .

(Z0(ℓ))
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In a similar fashion, we define the subproblem associated with ℓ ∈ L+, given by

min 0

s.t. θ(ℓ) ∈ RN
+ , α(l) ∈ RR

+, ν(l) ∈ RK
+

1 ≤ −e⊤θ(l) + b⊤α(ℓ)−
∑
k∈K
ℓk ̸=0

(
yk
ℓk
− 1

)
νk(ℓ)

θn(ℓ) ≤ A⊤α(ℓ) +
∑
k∈K
ℓk ̸=0

∑
ν∈δ(ℓk)

xννk(ℓ) ∀n ∈ N .

(Z+(ℓ))
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Appendix B

Technical Appendix to Chapter 3

B.1 Omitted Proofs from Section 2.5.2

Proof of Proposition 4. Let F : RN → R be an additive function in the form F (u) =

N∑
i=1

f(ui)

where f : R → R is a monotonically increasing and strictly concave function. We are focusing

on group fairness where the utility of each individual is given by the average utility of their

community. Hence, we can rewrite F (u) =
∑
c∈C

Ncf(uc). Let u = u(A) and u′ = u(A′) denote

the utility vectors corresponding to neighboring solutions A and A′, respectively. Suppose u and

u′ are sorted in ascending order and for all c ∈ C, index c in both vectors corresponds to the same

community, i.e., after the transfer the ordering of the utilities has not changed.

Furthermore, assume Σκ∈C:κ≤cNκ(uκ − u′
κ) ≥ 0, ∀c ∈ C and uc > u′

c for some c ∈ C. Clearly

u and u′ satisfy the assumptions of the influence transfer principle. We need to show that

Σc∈CNcf(uc) > Σc∈CNcf(u
′
c) or Σc∈CNc (f(uc)− f(u′

c)) > 0.

The proof is by induction. We iteratively sweep the vectors u and u′ from the smallest index

to the largest and show that for any κ ∈ C, Σc≤κNc (f(uc)− f(u′
c)) ≥ 0 with inequality becoming

strict for at least one κ. To do so we repeatedly use a property of strictly concave functions known

as decreasing marginal returns. According to this property f(x + δx) − f(x) > f(y + δy) − f(y)

for x < y and δx ≥ δy > 0.
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Figure B.1: An illustration for the graph used in the proof of Proposition 5 without the correct
scaling. There are three communities (circle, square and diamond) and they all have size 100.
The circle community consists of an “all-circle" star structure with 80 vertices, 14 isolated vertices
and a mixed star structure (shared with the diamond community) with 6 circle vertices. The
square community consists of two “all-square" star structures with sizes 60 and 10 plus a set of
30 isolated vertices. The diamond community consists of an “all-diamond" star structure with 30
vertices, 66 isolated vertices and a mixed star structure (shared with the circle community) with
4 diamond vertices.

More specifically, in our inductive step, we keep track of a “decrement budget” which we denote

by ∆. Intuitively if we can show that Σc≤κNc (f(uc)− f(u′
c)) > 0 with budget ∆ for some κ, we

can then use the decreasing marginal return property along with the assumption that u′ is sorted

to show that as long as Nκ+1

(
u′
κ+1 − uκ+1

)
≤ ∆ it is the case that Σc≤κ+1Nc (f(uc)− f(u′

c)) > 0.

After each round we update the ∆ and move on to the next element in the utility vectors.

Formally, let ∆ = 0 to start at the begining of this inductive process. After visiting the cth

community, we simply update ∆ by ∆ ← ∆ + Nc (uc − u′
c). By the assumption of the transfer

principle ∆ is non-negative at all points of this iterative process and is strictly positive at some

point during the process. Observe that f(u1) ≥ f(u′
1) since u1 ≥ u′

1 by the assumption of the

transfer principle and monotonicity of f . We can use this as the base case. Since u and u′ are

sorted, given that ∆ is non-negative, the fact that f is strictly concave (so that the decreasing

marginal return property can be used) immediately implies that Σc≤κNc (f(uc)− f(u′
c)) ≥ 0 at

any iteration κ of the process. The inequality becomes strict for some κ given the assumption of

the transfer principle. This proves the claim. ■

Proof of Proposition 5. Figure B.1 is an illustration of the graph that is used in the proof to

witness the statement. We set p = 1 (deterministic spread) and number of initial seeds K = 4.

Consider two choices of influencer vertices A and A′. Let A denote the choice that consists
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of the center of all-star structures that consist of a single community. Let A′ denote the solu-

tion that is identical to A with the sole difference that only the center of one of the all-square

structures is chosen and the last seed is selected to be the center of the star structure that

is the mix of circle and diamond communities. Clearly these two solutions are neighboring.

The average utilities for these solutions are (diamond = 0.3, square = 0.7, circle = 0.8) in u and

(diamond = 0.34, square = 0.6, circle = 0.86) in u′, respectively. Both solutions correspond to

a total utility of 180 but the utility gap is ∆(u) = 0.5 for u as opposed to the utility gap of

∆(u′) = 0.52 for u′. So a welfare function that obeys the utility gap reduction should prefer u

over u′.

W
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W

α(u
′�)

−4
−3
−2
−1

0
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α value
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α(u
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α(u
′�) )
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−50 −40 −30 −20 −10 0
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Figure B.2: The difference of Wα(u) −Wα(u
′) on the vertical axis versus α on the horizontal

axis for different welfare functions (this difference is scaled by a factor of 10−24 on the bottom
panel). Top panel: Wα(u) = Σc∈CNcu

α
c /α for α ∈ (0, 1); bottom panel: Wα(u) = Σc∈CNcu

α
c /α

for α < 0.

We now show that no welfare function that satisfies the first 5 principles will prefer u over u′.

Recall that such welfare functions are in the form Wα(u) = Σc∈CNcu
α
c /α for α < 1 and α ̸= 0,

Wα(u) = Σc∈CNc log(uc) for α = 0. We verify this claim numerically. In particular Figure B.2

plots the difference of Wα(u) −Wα(u
′) for Wα(u) = Σc∈CNcu

α
c /α when α ∈ (0, 1) (top panel)

and α < 0 (bottom panel). This difference is always negative so u′ is preferred by these welfare

functions. For Wα(u) = Σc∈CNc log(uc),Wα(u)−Wα(u
′) ≈ −4.3.

We point out that the instance used in the proof (graph structure, probability of spread and the

number of seeds) is designed with the sole purpose of simplifying the calculations of the utilities.

It is possible to modify this instance to more complicated and realistic instances.

167



■

Proof of Proposition 6. Let A and A′ denote two neighboring solutions with corresponding utility

vectors u = u(A) and u′ = u(A′). Let u denote any of the two utility vectors such that

Σc∈CNcuc ≥ Σc∈CNcu
′
c. Without loss of generality, we assume u′ is sorted in ascending order of

the utilities and u is permuted so that index c ∈ C in both u and u′ corresponds to the same

community. This is because we assume that W satisfies the symmetry principle due to which by

permuting a utility vector the value of the welfare function does not change. Let ν and κ ∈ C

denote the communities whose utilities are changed between u and u′, i.e., we assume ν and κ are

the two communities where taking influencer vertices from ν and giving them to κ will transfer

u′ into u.

To satisfy the condition of the utility gap reduction principle, it should be the case that

u′
ν ≥ u′

κ (i.e., we transfer influencer vertices from the group with higher utility to a group with

lower utility), otherwise after the transfer from u′ to u the utility gap could not get smaller (i.e.,

∆(u) ≥ ∆(u′) in which case the utility gap reduction is not applicable).

Assuming u′
ν ≥ u′

κ, if ∆(u) ≥ ∆(u′), again the assumption of the utility gap reduction

principle is not satisfied, hence the principle is not applicable and there is no need to study this

case. Therefore, we further assume ∆(u) < ∆(u′). We would like to show in this case a welfare

function W that satisfies all the 5 other principles witnesses W (u) > W (u′).

By assumption Σc∈CNcuc ≥ Σc∈CNcu
′
c. From this, it follows that:

∑
c∈C

Nc (uc − u′
c) ≥ 0 (B.1)

⇔Nν (uν − u′
ν) +Nκ (uκ − u′

κ) ≥ 0 (B.2)

⇔
∑

y∈C:y≤x

Ny(uy − u′
y) ≥ 0, ∀x ∈ C, (B.3)
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where both inequalities (B.2) and (B.3) follow directly from the fact that the utilities of all

the other communities are the same in both u and u′. Finally, since uκ > u′
κ (we are transferring

influencer vertices to the community κ), we can apply the influence transfer principle to show

that W (u) > W (u′) as claimed. ■

Proof of Lemma 3. As we have shown earlier welfare functions Wα(u) = Σc∈CNc log(uc) for α = 0

and Wα(u) = Σc∈CNcu
α
c /α for α < 1, α ̸= 0 satisfy all the first 5 principles. In [117], the

authors show that the composition of a non-decreasing concave function (in our case log(x), α = 0

or xα/α for α < 1, α ̸= 0) and a non-decreasing submodular function (in our case uc(A)) is

submodular. Since the sum of submodular functions is submodular, our proposed class of welfare

functions is submodular. Our welfare functions also satisfy monotonicity. This is because uc(A)

is monotonically non-decreasing so its composition with another monotonically non-decreasing

function (log(x) for α = 0 or xα/α for α < 1, α ̸= 0) will be monotonically non-decreasing.

Since our welfare functions are the sum of monotonically non-decreasing function they are also

monotone. ■

B.2 Leximin Fairness and Social Welfare

In this section, we show that leximin fairness can be captured by our welfare maximizing frame-

work. See [86] for more details.

Proposition 13. Welfare optimization is equivalent to the leximin fairness, i.e., there exists a

constant α0, such for α < α0, an optimal solution to the welfare maximization satisfies leximin

fairness and vice versa.

Proof. Let u = (u1, . . . , uN ) ≽ u(A) ∀A ∈ A⋆, where “≽” is the lexicographic ordering sign and it

indicates that u is a leximin fair solution (w.l.o.g. and with a slight abuse of notation, we assume

that both u and u(A) are sorted in increasing order). We aim to show that ∃α0 < 0 such that
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for any α ≤ α0, ΣN
i=1u

α
i /α ≥ ΣN

i=1u
α
i (A)/α, ∀A ∈ A⋆. For simplicity we multiply both sides of

the inequality by −1/α and since α < 0 the direction of the inequality sign does not change.

We now prove this inequality by contradiction. Suppose ∀α1 < 0, ∃α < α1 such that ΣN
i=1 −

uα
i < ΣN

i=1 − uα
i (A),∃A ∈ A⋆. Since u is a leximin solution then by definition u1 ≥ u1(A). We

consider two cases. First suppose u1 > u1(A).

N∑
i=1

−uα
i <

N∑
i=1

−uα
i (A)⇔∑N

i=1−u
α
i

min(u1, u1(A))α
<

∑N
i=1−uα

i (A)
min(u1, u1(A))α

=∑N
i=1−u

α
i

u1(A)α
<

∑N
i=1−uα

i (A)
u1(A)α

⇒

lim
α→−∞

∑N
i=1−u

α
i

u1(A)α
≤ lim

α→−∞

∑N
i=1−uα

i (A)
u1(A)α

⇒

0 ≤ −N1.

This is a contradiction since N1 > 0. Now, suppose u1 = u1(A). In this case, we can eliminate

the first terms that involve uα
1 and uα

1 from the two sides of inequality and redo the above steps

iteratively starting from the second biggest element in uα.

Next, we prove the other direction. Let us assume u is a utility vector such that ∃α0 < 0,∀α ≤

α0,
N∑
i=1

−uα
i ≥

N∑
i=1

−uα
i (A), ∀A ∈ A⋆. W.l.o.g, we can assume that u1 ̸= u1 otherwise we can

remove those terms that are equal and the proof still holds. However, we assume this for ease of

exposition. It follows that

∑N
i=1−u

α
i

min(u1, u1)α
≥

∑N
i=1−uα

i (A)
min(u1, u1)α

, ∀A ∈ A⋆.

If min(u1, u1) = u1 meaning that u1 > u1 we have −C − ϵ(α) ≥ −δ(α,A), ∀A ∈ A⋆ where C > 0

is a constant (equal to the number of entities in u that are equal to u1) and both ϵ ≥ 0 and δ ≥ 0

are functions of α and can be made arbitrarily small by decreasing α. This is a contradiction
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which means that min(u1, u1) = u1, i.e., u1 ≥ u1. By continuing this procedure, we can establish

that u ≽ u. This completes the proof. ■

B.3 Omitted Proofs from Table 2.1

In this section we provide detailed description of the entries of Table 2.1 and their derivations.

B.3.1 Monotonicity

Proposition 14. Exact DP does not satisfy monotonicity.

Figure B.3: Companion figure to Proposition 14. The network consists of two communities circle
and square, each of size N .

Proof. Let K = 2 and p ∈ (0, 1). Consider a graph G as shown in Figure B.3 consisting of two

communities, square and circle, each of size N (for large enough N). The circle community consists

of a star network of size N . The square community contains a star network of size 2 + p(N − 2)

and (N − 2)(1 − p) singletons. Consider two solutions A and A′. A will select a seed from the

periphery of the star for the circle community and allocate the other seed to the center of the

star for the square community. A′ on the other hand allocates each of the seeds to the center

of the stars. Let u = u(A) and u′ = u(A′) denote the corresponding allocations of A and A′.

The utility vectors for these allocations are u = ((1 + p+ p2(N − 2))/N, (1 + p+ p2(N − 2))/N)

and u′ = ((1 + p(N − 1))/N, (1 + p + p2(N − 2))/N), respectively. Clearly, u < u′. So by

monotonicity u′ is preferred to u. However, only u satisfies the exact DP. Hence, DP does not

satisfy monotonicity. ■

Proposition 15. Approximate DP does not satisfy monotonicity.
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Proof. Consider a graph G as shown in Figure B.4 consisting of two communities, square and circle,

each of size N . We choose an arbitrary δ ∈ (0, 1), to reflect the arbitrary strictness of a decision

maker. Let δ < p <
√
δ, K = 2 and N > max

(
3p/(p− δ), 1/(δ − p2)

)
. The optimal solution A of

the influence maximization problem chooses the center of the star and any disconnected square

vertex. In A, the utility of circle and square communities are (1 + (N − 1)p) /N and (1 + 2p)/N ,

respectively and the utility gap exceeds δ (so this solution does not satisfy the DP constraints). By

imposing DP, any fair solution is to choose one vertex from the periphery of the circle community

and one from the isolated square vertices. For a fair solution A′, the utilities of circle and square

are
(
1 + p+ p2(N − 2)

)
/N and (1 + 2p2)/N , respectively. Given the range of N , the utility

gap is less than δ so approximate DP is satisfied. Since the utility of both communities have

degraded, any monotone welfare function will prefer A′ (and its corresponding utility vector) over

A. However, only A′ is DP fair and hence it is preferred over A by DP. We point out that the

graph used in the proof is directed. This is for ease of exposition. It is possible to create a more

complex example with an undirected graph. ■

Figure B.4: Companion figure to Proposition 15. The network consists of two communities circle
and square, each of size N . All edges except the two shown by arrows are undirected meaning
that influence can spread both ways.

Proposition 16. Consider a general fairness notion as a set of constraints in the form of F ={
u ∈ [0, 1]C : uc ≥ lc, ∀c ∈ C

}
where lc ∀c ∈ C are arbitrary lower-bound values. The considered

fairness notion satisfies the monotonicity principle.

Proof. Let A and A′ ∈ A⋆ denote two solutions whose corresponding utility vectors u = u(A)

and u′ = u(A) are feasible (u,u′ ∈ F) such that u < u′. Given the objective function of

the influence maximization is equivalent to Σc∈CNcuc(A) and that all Nc values are positive the
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objective values of u′ is strictly better than u. Hence, W (u) < W (u′) and the monotonicity is

satisfied. ■

As we have shown in Section 2.4, both maximin and DC can be written as constraints that

are compatible with the fairness definition in Proposition 16. The utilitarian solution corresponds

to setting all the lower bounds to 0. Hence all of them satisfy monotonicity.

Corollary 1. DC, MMF and utilitarian satisfy monotonicity.

B.3.2 Symmetry

It is straightforward to show that DP (exact and approximate), maximin and utilitarian fairness

satisfy the symmetry principle. DC, however, does not satisfy the symmetry principle. Based

on its definition, DC can place different lower-bounds on the utility of different communities.

Hence, by permuting a utility vector we may no longer be able to satisfy the DC constraints (see

Definition 2.2).

B.3.3 Independence of Unconcerned Individuals

Proposition 17. Exact and approximate DP do not satisfy the independence of unconcerned

individuals.

Proof. Consider two utility vectors: u = ((1 + 3δ)/8, (1 − δ)/8) and u′ = ((1 + δ)/4, (1 − δ)/8)

for δ ∈ [0, 1). Both exact and approximate DP strictly prefer u over u′. Let us substitute

the second component of both vectors by (1 + δ)/4. Therefore, we obtain v = u|2(1 + δ)/4 =

((1+ 3δ)/8, (1+ δ)/4) and v′ = u′|2(1+ δ)/4 = ((1+ δ)/4, (1+ δ)/4). In contrast to the previous

case, both approximate and exact DP prefer v′ over v. Note that while the construction does

does not involve an instance of the influence maximization problem, it is possible to provide such

an instance to witness the claim as follows.
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Figure B.5: Companion figure to Proposition 17. The network consists of two communities circle
and square each of size N .

Figure B.5 demonstrates the instance witnessing the claim. We consider an influence maxi-

mization problem with two communities: circle (first component of the utility vector) and square

(second component of the utility vector), each of size N (for N large enough). We assume p = 1

and K = 2. The circle community consists of three components: two star components of size

N(1 + δ)/4 (small) and N(1 + 3δ)/8 (large) and 5N(1− δ)/8 isolated vertices. The square com-

munity consists of three components as well: two star components of size N(1− δ)/8 (small) and

N(1 + δ)/4 (large) and N(5 − δ)/8 isolated vertices. Solution u (u′) corresponds to selecting a

seed vertex from the large (small) star component of the circle community and a vertex from the

small star component of the square community. Allocation v (v′) corresponds to selecting a seed

vertex from the large (small) star component of the circle community a vertex from the large

star component of the square community. Note that the choice of p = 1 is merely for the ease of

exposition and the example network can be modified to accommodate p < 1. ■

Henceforth, we only discuss utility vectors when appropriate. In all such cases, there exist

instances of the influence maximization problem which witness these utility vectors. We have

demonstrated one such instance in the proof of Proposition 17, but we omit the details from the

remaining proofs for simplicity.

Proposition 18. DC does not satisfy the independence of unconcerned individuals.

Proof. Consider an instance of the influence maximization problem with 2 communities were the

lower bound set by DC for both communities is 0.4. Also consider 2 solutions with corresponding

utility vectors u = (0.5, 0.5) and u′ = (0.5, 0.3). Therefore, only u satisfies DC and hence

DC prefers u over u′. Let us substitute the first component with 0.35. Therefore, we obtain
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v = u|10.35 = (0.35, 0.5) and v′ = u′|10.35 = (0.35, 0.3). In contrast to the previous case, both

solutions are infeasible with respect to the DC (hence -∞ welfare, see Section 2.5.4). Therefore,

while W (u) > W (u′), it does not hold that W (v) > W (v′). ■

Proposition 19. MMF does not satisfy the independence of unconcerned individuals.

Proof. Consider an instance of the influence maximization problem with 3 communities of equal

size. Also consider 2 solutions with corresponding utility vectors u = (0.3, 0.6, 0.4) and u′ =

(0.3, 0.2, 0.8). Maximin fairness strictly prefers u over u′. Let us substitute the first component

with 0.1. Therefore, we obtain v = u|10.1 = (0.1, 0.6, 0.4) and v′ = u′|10.1 = (0.1, 0.2, 0.8).

Maximin fairness is indifferent between v and v′ (both have the same worst-case utility and total

utility) which shows that maximin fairness does not satisfy the independence of unconcerned

individuals. ■

Note that the utilitarian satisfies the independence of unconcerned individuals because if

W (u) = Σc∈CNcuc > Σc∈CNcu
′
c = W (u′) then W (u|cb′) < W (u′|cb′) since Nc, uc, u′

c and b′

are all non-negative.

B.3.4 Affine Invariance

Exact DP satisfies affine invariance principle because a linear transformation over a uniform vector

will remain uniform. However, for approximate DP this is not the case. More particularly, for any

utility vector u that is δ-DP for δ ∈ (0, 1) and an affine transformation of the form u′ = αu+ β,

u′ satisfies αδ-DP. Therefore, for α > 1, u′ does not satisfy δ-DP. Similarly, DC does not satisfy

this principle either. This is because after the transformation the constraints may not be satisfied

(e.g., when α < 1/min
c∈C

Uc). It is known that MMF satisfies this principle [33]. The same holds for

the utilitarian objective because if Σc∈CNcuc > Σc∈CNcu
′
c, then Σc∈CNcαuc+β > Σc∈CNcαu

′
c+β

since α > 0.
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B.3.5 Influence Transfer Principle

Proposition 20. Exact and approximate DP do not satisfy the influence transfer principle.

Proof. Let δ ∈ [0, 1) denote the parameter of DP. Consider utility vectors u = ((1 + δ)/2, 0) and

u′ = (δ, 0). The sizes of the all the communities are the same. Based on the influence transfer

principle, W (u) > W (u′), however, DP strictly prefers u′ over u. ■

Proposition 21. DC does not satisfy the influence transfer principle.

Proof. Let u = (0.5, 0.5) and u′ = (0.3, 0.6) denote the utility vectors of two allocations where

sizes of the all the communities are the same. Suppose the lower bounds set by DC are 0.25

and 0.55, respectively. This means that only u′ satisfies DC. Based on the transfer principle,

W (u) > W (u′), however, u does not satisfy DC and DC strictly prefers u′ over u. ■

Proposition 22. MMF does not satisfy the influence transfer principle.

Proof. Consider two utility vectors u = (0.2, 0.4, 0.6) and u′ = (0.2, 0.2, 0.8). The sizes of the all

the communities are the same. A fairness notion satisfying the influence transfer principle strictly

prefers u over u′. However, Maximin is indifferent between u and u′ as they both obtain the

same worst-case utility. ■

Proposition 23. Utilitarian does not satisfy the influence transfer principle.

Proof. Consider two utility vectors u = (0.5, 0.5) and u′ = (0.3, 0.7). The sizes of the all the com-

munities are the same. Based on the transfer principle, W (u) > W (u′), however, the utilitarian

approach is indifferent between u and u′ as both solutions lead to the same total utility. ■

B.3.6 Utility Gap Reduction

Proposition 24. DP satisfies the utility gap reduction if and only if δ = 0.
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Proof. It is easy to show that if δ = 0, DP satisfies the utility gap reduction principle. We can

prove this by contradiction. Suppose that δ = 0 and DP does not satisfy the utility gap reduction

principle. From this, it follows that given two utility vectors u,u′ such that
∑
c∈C

Ncuc ≥
∑
c∈C

Ncu
′
c

if ∆u < ∆u′, DP can strictly prefer u′. If u′ is preferred, then u′ is feasible and it must be that

∆u′ = 0 and ∆u < 0 which is not possible. Next, we show that if δ ̸= 0, DP does not satisfy this

principle over all instances of the influence maximization problem.

For the proof, we use the example used in the proof of Proposition 5. In that setting there

are two solutions with utility gap 0.52 and 0.5 with the same total utility. First, let us assume

δ > 0.02. In this case, since both solutions satisfy DP constraints, they are both feasible and

the total utility of both solutions is equal (= 180), however, DP does not strictly prefer the

solution with smaller gap. In fact, both solutions are feasible with the same objective value and

DP does not favor one solution to the other. For δ ≤ 0.02, we can use the same example graph

(see Figure B.1) and add enough isolated vertices to each community until the gap between the

solutions becomes small enough to pass the δ threshold. ■

Figure B.6: Companion figure to Proposition 25 of a graph with two communities: N black
vertices and N/3 white vertices for N = 9. We choose K = 4 and arbitrary p < 1. All edges are
undirected, meaning that influence can spread both ways.

Proposition 25. DC does not satisfy utility gap reduction principle.

Proof. Consider the network G as in Figure B.6 consisting of two communities white and black

with size N/3 and N , respectively. Suppose K = 4 and p < 1. Without DC, an optimal solution

places one seed vertex at the center of the black group and allocates the remaining 3 vertices to

the white group. We let u denote this solution. Thus, the utility of the black and white groups

will be equal to (1 + (N − 1)p) /N and 9/N . Since there is no edge between the black and white
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communities, DC (See Definition 2.2) reduces to how to optimally choose one seed vertex from

white and the remaining 3 from the black group. After imposing DC, the utility of the black and

white groups will be equal to (3+ (N − 3)p)/N and 3/N . We let w denote one such solution that

satisfies DC. While u has a higher total utility and a smaller utility gap, DC strictly prefers w

with higher utility gap and lower total utility. Therefore, DC does not satisfy utility gap reduction

principle. ■

Proposition 26. MMF does not satisfy the utility gap reduction

Proof. We prove the statement via the example in Figure B.7 which depicts a network with three

groups: blue, black and white. We fix K = 1 and p > 3/4. The graph corresponds to the case

where p = 1 but the example will hold for arbitrary p by setting the number of isolated green

vertices to be ⌈21/p⌉.

Figure B.7: Companion figure to Proposition 26 for the case of p = 1. The network consists of
three groups: white, blue and black. The edges are undirected so the influence can spread both
ways. For arbitrary p, the number of isolated black vertices should scale to ⌈21/p⌉.

Consider one solution that targets the center of the bigger star component. Thus, the utilities

of blue, black and white will be (1 + 4p)/11, 4p/11 and 0, respectively. This results in utility

gap equal to (1 + 4p)/11. By imposing leximin, the optimal fair solution selects the center of

the smaller star component and the optimal fair utilities of blue, black and white will be 6p/11,

p/11 and 1/(1 + ⌈21/p⌉), respectively and we observe a utility gap 6p/11 − 1/(1 + ⌈21/p⌉) ≥

6p/11 − 1/22 > (1 + 4p)/11, where we used p > 3/4 in the last inequality. In conclusion, while

the first solution has a higher total utility (= 9) and lower utility gap compared to the second

solution (total utility = 8), leximin still strictly prefers the second solution. This concludes the

proof. ■
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Proposition 27. Utilitarian does not satisfy the utility gap reduction

Proof. Consider an instance of the influence maximization problem where all the communities are

of size 10. Let u = (0.5, 0.5, 0.5) and u′ = (0.2, 0.5, 0.8). Both u and u′ achieve the same total

utility (=15). Thus, the utilitarian approach is indifferent between u and u′. According to the

utility gap reduction u is strictly preferred. We note that in this special instance, both influence

transfer principle and utility gap reduction apply and according to both principles u is strictly

preferred to u′. ■

B.4 Omitted Details from Section 2.6

B.4.1 Estimating the SBM Parameters for Landslide Risk Management

In order to qualitatively and formatively describe the network structure, the research team con-

ducted several in-person semi-structured interviews in Sitka, Alaska from 2018-2020. These in-

terviews were conducted with individuals who were identified as “community leaders” or “pop-

ular community members” through word-of-mouth, and then subsequently through respondent-

driven sampling, a broader range of community members were interviewed (n=14). In these

semi-structured interviews, respondents were asked to 1) sort and describe community groups

and 2) identify “cliques” and “isolates” as they relate to an early landslide warning system. The

former resulted in developing, to the extent possible, discrete a priori community groups. The

latter helped to inform the relationships between and within these groups. The interviewer took

notes which listed the responses and through a tallying and pile sorting exercise, attempted to

seek consensus in definitions of community groups. The formative research resulted in cliques

based on occupation, political affiliation, age, and local recreational activities. Many cliques were

overlapping with shared attributes (e.g. people from two different occupations share a political

affiliation and frequent the same local pub), however for the purposes of this formative exercise,

these community groups were qualitatively coerced into discrete classifications. These resulted
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in 16 community groups that include political affiliation, time spent in Sitka (e.g. new arrival

or tourist vs. long-term resident), occupation, and whether or not a parent of a child in the

public-school system. The community size estimates were developed based on a 2018 Sitka Eco-

nomic Development Survey, particularly for the occupation-based community groups, as well as

publicly available voter records for political affiliations. Several attributes, namely age, specific

occupation, time spent in Sitka, and parental status were unavailable in existing datasets, and

therefore required the use of proxies and assumptions for estimating community group sizes. Once

the community group sizes were estimated, based on the formative research notes on social cohe-

sion, cliques, and isolates, we further developed assumptions on within and between-community

connectedness. For example, if a respondent suggested that there may be very close relationships

between two cliques, we assumed a higher relative p(b) than between two cliques which had less

similar attributes. For simplicity, we limited the absolute probabilities for withing-community and

between-community probabilities between 0.00 and 0.10. We then sense-checked these absolute

probabilities with several of the initial formative research respondents. These absolute probabil-

ities were then organized into a 16 × 16 adjacency matrix to facilitate simulations for influence

maximization.

B.4.2 Relative Community Sizes
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Figure B.8: Utility gap and PoF for various relative community sizes where the ratio changes
from 1 to 9.

In this section we study the effect of relative community size on both utility gap and efficiency.

We consider synthetic samples of SBM network consisting of two communities each of size 100 and
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we gradually increase the size of one community from 100 to 900 in order to study its effect on

the utility values of each community. We set qc = 0.005 and qcc′ = 0.001. Results are summarized

in Figure B.8. This result indicates that the utility gap increases with the relative community

size, suggesting that minorities can be adversely affected without appropriate fairness measures

in place. We also note that the strength of our approach is in its flexibility to trade-off fairness

with efficiency. We may encounter scenarios where the fairness-efficiency trade-offs are mild (as

in the particular setting of Figure B.8), but this does not undermine our approach as there are

many practical situations (as discussed in real-world applications in the paper) where clearly this

is not the case and our approach can handle all those cases effectively. DC exhibits relatively

high utility gap. This is because by definition DC allocates more resources to communities that

“will do better with the resources” and it does not always show an aversion to inequality, a result

which we show theoretically in Section 2.5.4.

B.4.3 Suicide Prevention Application

Network Name # of Vertices # of Edges White Black Hispanic Mixed Race Other
W1MFP 219 217 16.4 41.5 20.5 16.4 5.0
W2MFP 243 214 16.8 36.6 21.8 22.2 2.4
W3MFP 296 326 22.6 34.4 15.2 22.9 4.7
W2SPY 133 225 55.6 10.5 – 22.5 11.3
W3SPY 144 227 63.0 – – 16.0 20.0
W4SPY 124 111 54.0 16.1 – 14.5 15.3

Table B.1: Racial composition (%) after pre-processing as well as the number of vertices and
edges of the social networks [17]

Influence maximization has been previously implemented for health promoting interventions

among homeless youth [188, 185]. In this section, we consider the problem of training a set

of individuals who can share information to help prevent suicide (e.g., how to identify warning

signs of suicide among others). We present simulation results over six different social networks of

homeless youth from a major city in US as described in [17]. We provide aggregate summaries

of these networks (e.g., size, edge density and community statistics) in Table B.1. The data set
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Measure (%)
Fairness Approach

K α = −5 α = −2 α = 0 α = 0.5 α = 0.9 DC Maximin IM

utility gap

5 4.8 7.5 8.5 9.7 11.4 8.2 3.5 12.5
10 4.6 6.6 7.3 9.5 12.9 6.9 2.0 11.7
15 3.6 5.2 5.9 8.9 13.5 7.6 2.4 15.3
20 3.6 4.4 5.9 7.3 14.0 5.8 2.3 17.2
25 2.6 3.5 4.6 5.8 13.2 7.0 2.0 16.6
30 2.4 3.2 4.3 6.4 8.6 8.2 2.0 15.7

PoF

5 6.9 5.1 3.4 1.5 0.7 14.4 16.6 0.0
10 6.6 3.8 2.8 0.7 0.1 14.3 13.1 0.0
15 3.8 2.5 1.6 1.1 0.1 14.6 10.5 0.0
20 4.6 3.8 2.9 2.0 1.0 13.9 10.5 0.0
25 4.0 3.2 2.5 1.9 1.0 13.4 9.9 0.0
30 3.9 3.4 2.9 2.3 1.8 12.7 10.8 0.0

Table B.2: Summary of the utility gap and PoF results averaged over 6 different real world social
networks for various budget, fairness approaches and baselines. Numbers in bold highlight the
best values in each setting (row) across different approaches.

consists of six different social networks of homeless youth from a major city in US as described in

detail in [17]. Each social network consists of 7 racial groups, namely, Black or African American,

Latino or Hispanic, White, American Indian or Alaska Native, Asian, Native Hawaiian or Other

Pacific Islander and Mixed race. Each individual belongs to a single racial group. We use these

partitioning by race to define our communities. However, to avoid misinterpretation of the results,

we combine racial groups with a population < 10% of the network size N under the “Other”

category. After this pre-processing step, each dataset will contain 3 to 5 communities. Results

are summarized in Table B.1. We remark that the absent of a racial category in a given network

is due to their small sizes and hence being merged into the “Other" category after pre-processing

(e.g., Hispanic in network W2SPY.)

We compare our welfare-based framework for different values of α against DC, MMF and

influence maximization without fairness considerations (IM). Table B.2 provides a summary of

the results averaged over all network instances where the numbers in bold highlight the best values

(minimum utility gap and PoF) for each budget and across different fairness approaches. As seen,

IM typically has a large utility gap (up to 17.2% for K = 20 which is significant because the

total influence is only 28.40%). By imposing fairness we can reduce this gap. In fact, we observe
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that across different values of α ranging from -5 to 0.5, there is a decreasing trend in utility gap,

where for K = 20 and with α = −5, we are able to decrease the utility gap by 3.6%. Consistent

with previous results on SBM networks, both MMF and α = −5 exhibit very low utility gaps,

however, MMF results in higher PoF. Furthermore, across the range of α we observe a mild trade-

off between fairness and utility. This shows that in these networks enforcing fairness comes at a

low cost, though as we see in the landslide setting, this is not always the case.
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Figure B.9: Top and bottom panels: utility gap and PoF for each real world network instances
(K = 30).

Figure B.9 shows the results for each network separately (X axis) for a fixed budget K = 30.

Figure B.9 shows that the trade-offs can also be very network-dependent (compare e.g. W2SPY

and W3MFP). This highlights the crucial need for a flexible framework that can be easily adjusted

to meaningfully compare these trade-offs.
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Appendix C

Technical Appendix to Chapter 4

C.1 Proof of Proposition 8

Proof. We let the Xq = 1 be the event where P (X) = q (Xq = 0 otherwise). It holds that:

V (πM ) = E

[∑
r∈R

π(r |X)Y (r)

]

=
∑
q∈Q

P(Xq = 1)E

[∑
r∈R

π(r |X)Y (r)

∣∣∣∣∣Xq = 1

]

=
∑
q∈Q

P(Xq = 1)E

[∑
r∈R

π(r |X) (Y (r)− Y (0))

∣∣∣∣∣Xq = 1

]
+

P(Xq = 1)E

[∑
r∈R

π(r |X)Y (0)

∣∣∣∣∣Xq = 1

]

=
∑
q∈Q

P(Xq = 1)E

[∑
r∈R

π(r |X) (Y (r)− Y (0))

∣∣∣∣∣Xq = 1

]
+ P(Xq = 1)E [Y (0) |Xq = 1]

=
∑
q∈Q

P(Xq = 1)E

[∑
r∈R

π(r |X) (Y (r)− Y (0))

∣∣∣∣∣Xq = 1

]
+ C

=
∑
q∈Q

P(Xq = 1)
∑
r∈R

π(r |X)E [Y (r)− Y (0) |Xq = 1] + C

=
∑
q∈Q

λq

λQ

∑
r∈R

fqr
λq

τqr + C

=
∑
q∈Q

∑
r∈R

fqrτqr
λQ

+ C,
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where C =
∑
q∈Q

P(Xq = 1)E [Y (0) |Xq = 1] = E [Y (0)] . ■

C.2 Proof of Proposition 9

Proof. We first prove part one and show the conditional independence for each component Yr

of the potential outcome vector. The proof is in the same vein as the balancing scores in the

causal inference literature which is essentially a low-dimensional summary of the feature space

that facilitates causal inference for observational data in settings with many features. For binary

potential outcomes, we have

P(Yr = 1 | S, R) = E[Yr | S, R]

= E [E [Yr | S, R,X] |S, R]

= E [E [Yr | S,X] |S, R]

= E [E [Yr |X] |S, R]

= E [Sr |S, R]

= Sr,

where the third line follows the assumption of the proposition and the fourth line holds since S

is essentially a function of X and can be dropped. We also show

P(Yr = 1 | S) = E[Yr | S]

= E [E [Yr | S,X] |S]

= E [E [Yr |X] |S]

= E [Sr |S]

= Sr.
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We proved P(Yr = 1 | S, R) = P(Yr = 1 | S). We now prove the second part of the proposition.

P (P(R = r |X = x) > 0) = 1⇒ P (P(R = r,X = x) > 0) = 1

P (P(R = r,X = x) > 0) = P (P(R = r,X = x,S = s) > 0)

≤ P (P(R = r,S = s) > 0) .

It follows that P (P(R = r,S = s) > 0) = 1 for all values of s. ■

C.3 Computational Results

HMIS Data Preparation. We used HMIS dataset collected between 2015 and 2017 across 16

communities in the United States. The dataset contains 10,922 homeless youth and 3464 PSH and

RRH resources combined. We removed all those with veteran status (54 data points), pending and

unknown outcomes (4713 data points). We grouped Hawaiian/Pacific Islander, Native American,

Hispanics, Asian under ‘Other’ category as no significant statistical inference can be made on

small set of observations within each individual category. Further, we removed 6 data points with

no gender information. We use a median date 08/13/2015 as the cut-off date to separate train

and test sets.

Outcome Estimation. Figure C.1 depicts the average outcome across different score values

E[Y (r) | S = s] ∀r ∈ R, using the DR estimate. Under SO, after S = 8, there is a significant drop

in average outcome. Average outcomes under PSH and RRH also exhibit a decline with score.

However, they remain highly effective even for high-scoring youth.

Propensity Score. In order to evaluate different policies using IPW and DR methods, we

estimated the propensity scores, i.e., π0(R = r | X = x). Table C.1 summarizes the accuracy

186



Model In-Sample
Accuracy (%)

Out-of-Sample Accuracy
(%)

NST Score

Multinomial Regression 72.5 73.7

Neural Network 76.4 76.5

Decision Tree 76.3 76.2

Random Forest 76.4 76.3

All Features

Multinomial Regression 75.4 73.5

Neural Network 80.4 77.2

Decision Tree 79.2 78.5

Random Forest 99.7 79.3

Table C.1: Prediction accuracy for propensity estimation using HMIS data.

across different models. We consider two models, one that uses only the NST score and one that

uses the entire set of features in the data. We observe that, even though the policy recommen-

dations only use NST score, including other features help improve the accuracy. In addition, the

decision tree and random forest are the top-performing models. Although random forest exhibits

over-fitting (in-sample accuracy = 99.6%) its out-of-sample accuracy (79.3%) outperforms other

models. In addition to accuracy, the propensity models should be well-calibrated. That is, the

observed probability should match the predicted probability. We plot the reliability diagrams in

Figure C.2, where y−axis is the observed probability in the data and the x−axis is the predicted

value. The dots correspond to values of different bins. A well-calibrated model should lie on the

y = x diagonal line.
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Figure C.1: Probability of exiting homelessness across the NST score range estimated using the
DR method.
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Figure C.2: Reliability diagram of propensity estimation, RRH (top) and PSH (bottom).

As seen in Figure C.2, random forest and neural network models have relatively better cali-

bration property. Finally, in our model selection, we take fairness considerations into account. In

particular, we study the calibration of the models across different demographic groups for which

fair treatment is important. Since ultimately we use the probability estimates, not the binary

prediction, it is important to ensure that across different demographic groups, the models are

well-calibrated. We adopted test-fairness notion [51]. We fit a model to predict the resource one

receives, based on the predicted propensities and demographic features. In a well-calibrated model

across demographic groups, the coefficients of the demographic attributes should not be statisti-

cally significant in the prediction. For the predicted values of the random forest model none of

the demographic attributes coefficients were found to be statistically significant. In addition, the

model were calibrated within groups with coefficient near 1. Regression results are summarized

in Table C.2. Hence, we chose random forest as the model of historical policy π0.

Outcome Estimation. In the direct method, one estimates the (counterfactual) outcomes under

different resources by fitting the regression models P(Y | X = x, R = r) ∀r ∈ R. For model

selection, we followed the same procedure as propensity score estimation. Table C.3 summarizes

the accuracy of different models for each type of resource.
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Coeffs. Estimates p-value
Intercept -0.012 0.066
PSH pred. 0.985 <2e-16
Race = 2 0.011 0.204
Race = 3 0.002 0.803
Gender = 2 -0.006 0.469
Age = 2 0.006 0.485

Coeffs. Estimates p-value
Intercept -0.054 5.7e-05
RRH pred. 1.125 < 2e-16
Race = 2 -0.007 0.586
Race = 3 -0.014 0.394
Gender = 2 0.000 0.987
Age = 2 -0.003 0.813

Table C.2: Propensity calibration within group for PSH (left) and RRH (right) of random forest
model. None of the coefficients of the demographic attributes are found to be significant. In
addition, the coefficient associated with the predicted probability is close to 1 in both models,
suggesting that the model is well-calibrated even when we control for the demographic attributes.

Model PSH RRH SO

NST

Logistic Regression 83.1 78.8 90.0

Neural Network 83.9 78.9 90.0

Decision Tree 83.9 78.9 90.0

Random Forest 83.1 78.6 90.0

NST + Demographic

Logistic Regression 83.1 78.8 90.0

Neural Network 81.6 78.3 90.3

Decision Tree 83.9 78.8 90.0

Random Forest 83.9 78.1 90.0

All Features

Logistic Regression 81.9 82.2 90.3

Neural Network 83.9 78.8 86.8

Decision Tree 74.3 81.1 90.0

Random Forest 83.9 81.4 90.0

Table C.3: Out-of-Sample Accuracy (%) of different outcome estimation models (outcome defini-
tion in Figure 3.4).

Considering the reliability diagrams in Figure C.3, we observe that logistic regression models

are well-calibrated across different resources. We also investigated test-fairness of logistic regres-

sion where we fit the observed outcome against the predicted outcome and demographic features.

Results are summarized in Table C.4. As seen, the coefficients of demographic features are not

significant, suggesting that test-fairness is satisfied.

Optimal Matching Topology for Fairness over Age.

Figure C.4 depicts the policies when fairness over age is imposed. According to this figure,

across all score values youth below 17 years are eligible for PSH. On the other hand, mid- and
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Figure C.3: Reliability diagram of outcome, SO (top), RRH (middle) and PSH (bottom).
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Figure C.4: The matching topology split by resource type: left (SO), middle (RRH) and right
(PSH). The solid line indicates that the resource is connected to the entire queue. The dotted
line indicates connection to a sub-group within the queue. For example, in the left figure, SO is
only connected to the individuals with NST = 6 and age over 17.

high-scoring youth over 17 years old, are eligible for PSH. We further imposed constraints to

ensure within each score group, the connections are the same for different age groups. Figure C.5

illustrates the resulting matching topology, according to which individuals who score above 7 are

eligible for RRH and PSH, regardless of their age. Those who score 6 are eligible for all three

resource types. Finally, All youth with score below 6 are only eligible for SO. We observe that all
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Coeffs. Estimates p-value

PSH

Intercept 0.147 0.489
PSH pred. 0.853 0.000
Race = 2 -0.021 0.666
Race = 3 -0.061 0.324

Gender = 2 0.003 0.954
Age = 2 0.079 0.202

RRH

Intercept -0.122 0.645
RRH pred. 1.172 0.000
Race = 2 0.028 0.386
Race = 3 0.025 0.504

Gender = 2 -0.021 0.433
Age = 2 0.003 0.931

SO

Intercept 0.035 0.148
SO pred. 0.974 <2e-16
Race = 2 -0.000 0.973
Race = 3 0.023 0.226

Gender = 2 -0.008 0.618
Age = 2 -0.011 0.542

Table C.4: Outcome calibration of logistic regression model within group under PSH, RRH and
SO. None of the coefficients of the demographic attributes are found to be significant. In addition,
the coefficient associated with the predicted probability is close to 1 in both models, suggesting
that the model is well-calibrated even when we control for the demographic attributes.
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Figure C.5: Fair topology (age)

individuals who belong to a certain queue, regardless of their age, are eligible for the same types

of resources. As a result of combining the queues that depended on age, the worst-case policy

value across the age groups decreased from 0.74 to 0.69 which still outperforms the SQ (data)

with worst-case performance of 0.64.
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