
Contingency-Aware Influence Maximization: A Reinforcement Learning
Approach

Haipeng Chen1 Wei Qiu2 Han-Ching Ou1 Bo An2 Milind Tambe1

1Center for Research on Computation and Society, Harvard University
2School of Computer Science and Engineering, Nanyang Technological University

Abstract

The influence maximization (IM) problem aims
at finding a subset of seed nodes in a social net-
work that maximize the spread of influence. In
this study, we focus on a sub-class of IM prob-
lems, where whether the nodes are willing to be
the seeds when being invited is uncertain, called
contingency-aware IM. Such contingency aware
IM is critical for applications for non-profit organi-
zations in low resource communities (e.g., spread-
ing awareness of disease prevention). Despite the
initial success, a major practical obstacle in pro-
moting the solutions to more communities is the
tremendous runtime of the greedy algorithms and
the lack of high performance computing (HPC) for
the non-profits in the field – whenever there is a
new social network, the non-profits usually do not
have the HPCs to recalculate the solutions. Moti-
vated by this and inspired by the line of works that
use reinforcement learning (RL) to address combi-
natorial optimization on graphs, we formalize the
problem as a Markov Decision Process (MDP), and
use RL to learn an IM policy over historically seen
networks, and generalize to unseen networks with
negligible runtime at test phase. To fully exploit
the properties of our targeted problem, we propose
two technical innovations that improve the existing
methods, including state-abstraction and theoreti-
cally grounded reward shaping. Empirical results
show that our method achieves influence as high as
the state-of-the-art methods for contingency-aware
IM, while having negligible runtime at test phase.

1 INTRODUCTION

Influence maximization is the problem of finding a subset
of seed nodes in a social network that maximize the spread

of influence. Originally derived from the viral marketing
domain, the majority of IM algorithms [Kempe et al., 2003,
Leskovec et al., 2007, Borgs et al., 2014, Tang et al., 2015]
focus on settings where nodes are always willing to be the
seeds, which may not be the case in many real-world sce-
narios. For example, recent work [Yadav et al., 2016, 2018,
Wilder et al., 2018] provides large-scale applications of IM
in public health. More specifically, they use IM algorithms
to help spread the awareness of HIV prevention among
homeless youth, where the youth leaders when being in-
vited to be the “seed” nodes, may have difficulty joining and
thus deviate from the intervention plan. In this sub-class of
IM problems called contingency-aware influence maximiza-
tion [Yadav et al., 2018], when a node is invited to become
a seed node, there is uncertainty in whether it is willing to
accept the invitation.

This contigency-aware IM problem has been addressed us-
ing Partially observable MDP (POMDP) [Yadav et al., 2016,
2018] and greedy algorithms [Wilder et al., 2018]. Despite
their success in the field [Wilder et al., 2021], there is a ma-
jor limitation in transitioning the solution to more homeless
youth shelters and cities – whenever the underlying social
network changes, the solution to the IM problem needs to be
recomputed, whereas the stakeholders usually do not have
the HPCs to perform the computation on their own. Figure 1
shows the runtime of the IM component for the state-of-the-
art CHANGE algorithm [Wilder et al., 2018, 2021] on a
network with 1000 nodes and 4974 edges when the number
of seeds increases (run on a single Intel(R) Core(TM) i9-
9820X CPU @ 3.30GHz core, with the sampling frequency
of CHANGE set to 50, the influence propagation probabil-
ity being set to 0.2). CHANGE runs 10 hours even with
just 20 seed nodes, presenting a great burden to the low-
resource non-profits such as homeless shelters, particularly
as they scale-up these applications. In fact, the low-resource
computing issue exists in many other works on social net-
work intervention [Srivastava et al., 2019, Rice et al., 2020,
Awasthi et al., 2020, Petering et al., 2021] and deploying AI
techniques to the public sector in general [Mehr et al., 2017,

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

ar
X

iv
:2

10
6.

07
03

9v
1

 [
cs

.S
I]

 1
3

Ju
n

20
21

mailto:Haipeng Chen <hpchen@seas.harvard.edu>?Subject=Your UAI 2021 paper

4 8 12 16 20
100

200

300

400

500

600

700

Figure 1: Runtime
of CHANGE (in
mins), where x-axis
is the number of
seed nodes.

Mikhaylov et al., 2018, Guo and Li, 2018], especially when
low-resource non-profits are the decision makers at stake.

Recently, there have been studies that use RL to learn a
generalized policy for a certain combinatorial optimization
problems on graphs [Khalil et al., 2017, Nazari et al., 2018,
Deudon et al., 2018, Bengio et al., 2020]. The key idea is
to decompose the selection of nodes into a sequence, and
learn a heuristic policy that selects nodes sequentially. The
RL policy is usually trained on a set of seen training graphs,
in the hope that it generalizes to unseen test graphs of sim-
ilar characteristics. To better generalize the trained policy
across different graphs, graph embedding techniques, such
as Structure to Vector (S2V) [Dai et al., 2016] and Graph
Convolutional Networks (GCNs) [Kipf and Welling, 2016]
are integrated as part of the RL value functions to extract
the graph structure information. Primarily proposed to solve
relatively simple problems such as the traveling salesman
problem (TSP) and the maximum vertex cover (MVC) prob-
lem, recent works [Li et al., 2019, Manchanda et al., 2020,
Tian et al., 2020] extend it to the IM problem without consid-
ering node uncertainty. Inspired by these works, we propose
to address the contingency-aware IM problem using RL.

There are however new challenges in designing an effective
RL algorithm for contigency aware IM. First, in previous
RL for IM methods, the state (as well as state transition) of
the MDP is the nodes that are previously selected, which
is deterministic. In our problem, the willingness status of
nodes selected before the current step are unknown. When
formulating an MDP model, there remains a question of
how to define a state that well incorporates the uncertainty
information. Second, in these previous works, the immediate
reward is set as the marginal contribution of a new node
selected at the current time step. This cannot be simply
applied in our problem because of the uncertainty in node
status. Moreover, it introduces an extremely high variance
in the marginal contribution of a new node, and thus renders
the RL training much more challenging.

To address the challenges, we propose a new MDP formu-
lation to the underlying problem. Though this formulation
preserves the Markovian property, its state is highly sparse
and thus makes it hard for RL to learn efficiently. We make
the first technical innovation with a state-abstraction com-

ponent for RL, which compresses the states in a more com-
pact manner, while preserving the uncertainty information.
To address the high variance in reward function, we make
our second technical innovation by using a novel reward-
shaping technique. The reward-shaping component exploits
two unique properties in the problem: 1) The probability of
a generic node willing to be a seed or not is usually known,
which can be learned from historical data; 2) The influence
function is submodular. We first use the node willingness
probability to express the exact “expected” reward, which
we show is computationally infeasible. Using the submodu-
larity property, we then design a surrogate reward function
in place of the exact expected reward, with provable worst-
case guarantee compared to the exact expected reward.

Summary of contributions. 1) We are the first to address
the contingency-aware IM problem using an RL approach.
We propose a new MDP formulation for this problem. 2)
Our technical contribution is a new RL algorithm that is
built upon the line of works that use RL to address com-
binatorial optimization problems on graphs, while making
non-trivial, theoretically grounded adaptations that exploit
the problem properties. 3) We conduct extensive experimen-
tal evaluations and show that under various settings, RL can
perform as good as state-of-the-art greedy IM algorithms
from the HIV prevention domain. Ablation study results
demonstrate the effectiveness for each of the two novel com-
ponents. Our code can be found via https://github.
com/Haipeng-Chen/RL4IM-Contingency.

2 RELATED WORK

Influence maximization The IM problem is first studied
by Domingos and Richardson [2001] as an algorithmic prob-
lem. Kempe et al. [2003] formulate it as a discrete opti-
mization problem over the graphs, and propose a greedy
algorithm to solve the problem, which has a guarantee of
1 − 1/e. Cost-Effective Lazy Forward (CELF) [Leskovec
et al., 2007], Reverse Influence Sampling (RIS) [Borgs et al.,
2014] and Influence Maximization via Martingales (IMM)
improve the greedy algorithm by more efficient spread esti-
mation techniques. Golovin and Krause [2011] extend the
IM problem to the adaptive setting, where seed selection
is adapted based on observing the influence spread of pre-
viously selected nodes. More efficient methods [Han et al.,
2018, Sun et al., 2018, Huang et al., 2020] are proposed later
on to solve the adaptive IM problem. Adaptive IM differs
from our setting in that our focus is to address the uncer-
tainty in a node’s willingness to participate, which they do
not address. Moreover, they observe the influence of the
previously selected nodes and select new nodes based on the
observation, whereas we do not observe such intermediate
influence. Yadav et al. [2018] introduce contigency-aware
influence maximization in the context of HIV prevention
among homeless youth and solve the challenge using a

https://github.com/Haipeng-Chen/RL4IM-Contingency
https://github.com/Haipeng-Chen/RL4IM-Contingency

POMDP; this solution does not scale beyond very small
number of influencers. To remedy this shortcoming, Wilder
et al. [2018] develop greedy IM algorithms for contingency
aware influence maximization in the field, which is deployed
in field test [Wilder et al., 2021]. Different from their work,
we introduce learning techniques to address the problem.

ML/RL for combinatorial optimization on Graphs
Vinyals et al. [2015], Bello et al. [2016], Graves et al. [2016]
make early attempts in using ML/RL to address combi-
natorial optimization problems on graphs, where they de-
compose the original combinatorial action into a sequence
of individual actions, and propose learning frameworks
to learn heuristics for the problems. These approaches
do not generalize well among unseen graphs, or are data-
inefficient. Khalil et al. [2017] propose to use graph embed-
ding techniques as the value approximator for the Deep Q-
Networks (DQN) [Mnih et al., 2013], and therefore their ap-
proach generalizes better for graphs out of distribution. Kool
et al. [2018] propose an approach that combines attention-
based function approximators with policy gradient meth-
ods [Williams, 1992]. Li et al. [2018] approximate the solu-
tion quality with GCNs [Kipf and Welling, 2016], and use a
learning framework based on guided tree search. Joshi et al.
[2019] address the problem using a combination of GCNs
and beam search. Qiu et al. [2019] combine RL and GCNs to
address the road tolling problem in a transportation network.
Ou et al. [2021] adapt the idea to address recurrent disease
prevention on a social network. Mao et al. [2019] use it to
address the scheduling problem in data processing clusters.
We refer to Bengio et al. [2020] for a detailed survey on this
line of works.

ML/RL for IM Lin et al. [2015], Ali et al. [2018] use RL
to do influence maximizaiton in a competitive setting. They
do not consider generalization, and the policy is to choose
which high-level greedy algorithm to use. Kamarthi et al.
[2020] apply RL to explore an unknown graph in the con-
text of influence maximization. This work is different from
ours as they use RL to explore the graph structure instead
of selecting seeds. Ko et al. [2020] propose an inductive
ML approach to estimate the influence spread of unseen
networks. Li et al. [2019], Tian et al. [2020], Manchanda
et al. [2020] extend the method in [Khalil et al., 2017] to
address the IM problem, where reward of a new node is de-
fined as its marginal contribution. Manchanda et al. [2020]
aim at solving problem instances with millions of nodes.
It uses supervised learning as a preliminary step to predict
the individual quality of a node, which introduces large ex-
tra computational overhead and effort of hand-crafting the
learning pipeline. Because of this, it does not scale to large
number of training graphs. Moreover, all these methods do
not consider the uncertainty of a node’s willingness to be
seed, and thus fail to address the challenges that are dis-
cussed previously. We will show empirically that directly
applying their methods leads to sub-optimal performance.

3 CONTINGENCY-AWARE IM

Our work is motivated by previous works [Yadav et al.,
2016, 2018, Wilder et al., 2018] which use influence maxi-
mization to spread the awareness of HIV prevention among
the homeless youth. An HIV awareness intervention is a
day-long class followed by weekly hour-long meetings. Due
to limited resources, only a subset of youth will be selected
to attend the classes. The trained youth will then act as peer-
leaders who further spread the awareness of HIV prevention
among the youth social network. An important observation
is that when being invited to the training sessions, whether
the youth is willing to be present at the classes is unknown
until the end of the intervention round. Despite the initial
success, a practical challenge that prevents the transitioning
of their methods to more homeless youth shelters and cities
is the lack of HPC resources for the non-profits in the field.
Once the social network changes, the algorithm has to be
rerun, without reusing knowledge about historical data. In
fact, the low-resource computing scenario is ubiquitous in
real life, especially for low-resource non-profits which are
in urgent need of help from the AI community. We provide
a new learning-based perspective of addressing the problem.

3.1 PROBLEM SETUP

Influence spread model We consider a social network
G = (V,E) where V and E are respectively the nodes
and edges. Each node is either activated, meaning the node
is influenced, or inactivated otherwise. We assume all nodes
are initially inactivated unless chosen as the seed node. Two
nodes that are connected by an edge e ∈ E has a probability
of influencing each other. We model the influence spread
using the prominent Independent Cascade (IC) model [Gold-
enberg et al., 2001, Kempe et al., 2003]. That is, for each
node v ∈ V that is activated at a certain time, it has a single
chance of activating its neighbors at the next time, with a
probability p. Given a seed node set S ⊆ V , the influence
spread in the graph G is represented as I(G,S). The influ-
ence maximization problem aims at finding an optimal set
of (usually budget-constrained) seed nodes S∗ ⊆ G, such
that the influence spread is maximized.

Seed selection and node uncertainty As motivated by the
multi-round seed selection in the HIV prevention domain,
we consider seed selection as multiple rounds t = 1 . . . T of
seed nodes selection, where each round selects a mini-batch
of B nodes.1 At each round t, the set of selected seed nodes
is represented as St. As discussed before, when being se-
lected, each node v ∈ St may not necessarily be willing to
act as a seed node. To capture this uncertainty, we denote the

1Note that our model is not limited to the multi-round setting,
but is a more generalized model that can tackle both single round
and multi-round seed selections. We will show empirically that our
model and algorithm work well on single round node selection.

probability of a node willing to be seed (when selected as
seed node) as q.2 We assume that this probability is known
a priori, which can be estimated by using statistics of histor-
ical data. The realization of the willingness status of the se-
lected nodes can be observed at the end of each intervention
round t. Naturally, the set of nodes Ot who are willing to be
seeds at round t is a subset of St: Ot ⊆ St. At the end of t,
the history of selection and willingness status of all seeds is
denoted as a sequence Ht = ((S1, O1) . . . (St, Ot)).

3.2 MDP FORMULATION

Due to the sequential planning essence of the multi-round
IM problem, we formulate it as a discrete time MDP.

Time step A natural way of defining a time step is to treat
each intervention round t as a time step. However, in doing
so, the action of each time step still consists of B nodes,
and thus selecting the optimal action in each round t is still
a combinatorial optimization problem with a combination
of choices of size

(|V |
B

)
. To avoid this, we define the time

step as selecting each individual node. To distinguish the
two concepts, we will call each intervention round as a main
step t, and the selection of each individual node within each
main step as a sub-step (t, b). We have t = 1 . . . T , and
b = 1 . . . B. The time horizon is thus T ×B.

State To fully capture the information of the status of
a current sub-step (t, b), we use a binary matrix Xt,b ∈
{0, 1}3×|V |, together with the adjacency matrix G to rep-
resent the state (G,Xt,b).3 Note that G is fixed over time.
Thus we will just use Xt,b to refer to the state. Each column
Xv
t,b of Xt,b denotes the status of one node v. In the initial

state, Xt,b is initialized as all zeros. As the sequence of de-
cision goes, the first element X1,v

t,b = 1 indicates node v is
selected as a seed node and is willing to be seed. The second
element X2,v

t,b = 1 means node v is selected as a seed node
and is unwilling to be seed. The third element X3,v

t,b = 1
means node v is selected at a main step t but the main step is
not ended, so that its willingness status remains unknown. In
this way, we can compress the history Ht of node selection
and realization of nodes’ willingness status using a matrix
form. Given the Markovian property, the status of the cur-
rent time step does not depend on the sequence. Moreover, it
considers the uncertainty in nodes’ willingness status within
the current main step. Thus, the state representation does
not lose information about the state.

Action There are two types of actions. We define a sub

2Similar to Yadav et al. [2018], we assume a same q value
for all the nodes in this model due to the practical challenge of
knowing the exact q value for each node. In Yadav et al. [2018],
it is done by using statistics on the historical attendance rate of
youths when being invited.

3With a bit abuse of notation, we use G to represent both a
graph and its adjacency matrix.

action as the selection of a single node at each sub-step (t, b).
It is denoted as a one-hot vector at,b ∈ {0, 1}|V |, where
there is only one element in at,b that corresponds to the
node being selected, i.e.,

∑|V |
v=1 a

v
t,b = 1. Correspondingly,

a main action At is defined as the aggregation of all the sub
actions in this main step at the end of each main step t:

At =
∑B

b=1
at,b, ∀t = 1 . . . T (1)

At can be seen as the vector form representation of St. Note
that

∑|V |
v=1A

v
t = B.

State transition We omit the description of G as it is fixed
over time. Apart from that, there are two types of state
transitions. The first type happens at the end of each sub-
step (t, b), i.e., whenever a new node is selected, there is:

X3
t,b+1 = X3

t,b + at,b, ∀b = 1 . . . B − 1, t = 1 . . . T (2)

We can see that this type of state transition is deterministic.

The second type of sate transition happens only at the end of
each main step t. It reveals the realization of the willingness
status of the selected nodes at the main step. This type of
state transition is stochastic, and directly depends on the
probability q. To formalize it, we first define Āt ∈ {0, 1}|V |
as the realization of main action At, which can be seen as
the vector form of Ot. The v-th element Āvt = 1 means that
node v is invited and willing to be a seed. It is naturally
constrained that for each v ∈ V : Āvt ≤ Avt . Let a scalar
B̄t :=

∑|V |
v=1A

v
t . It means the number of nodes which

are willing to be seeds when being selected at main step t.
Given the above, we can derive the three dimensions of state
Xt+1,1 of the next time step (t+ 1, b = 1) as

X1
t+1,b=1 = X1

t,B + Āt,

X2
t+1,b=1 = X2

t,B +At − Āt, X3
t+1,b=1 = 0

(3)

The probability of this transition is:

P (Xt+1,1, At → Āt|Xt,B , At) = qB̄t(1− q)B−B̄t (4)

Reward The total reward is defined as the total influence
that is achieved within the social network G, given the se-
lection of nodes that is represented as XT,B . We denote
the total accumulated reward as r(G,XT,B). This incurs
the issue known as reward sparseness, which makes it chal-
lenging for RL to learn efficiently. To mitigate this issue, Li
et al. [2019], Tian et al. [2020], Manchanda et al. [2020] use
the marginal contribution of a new node as the immediate
reward. Denote the set of seed nodes selected before as S,
the marginal contribution of a new node v is defined as
as ∆I(G,S, v) := I(G,S ∪ {v}) − I(G,S). This cannot
be directly applied to our problem due to the node will-
ingness uncertainty within each intervention round t. For
now we denote the immediate reward as a generic notation
r(G,Xt,b, at,b). We will revisit this issue in Section 4.3
when we introduce our proposed reward shaping technique.

Training graph pool

Budget
used?

Yes

No

State !",$
Terminal

state

Pick a graph

One episode
� � � Unselected (!",%&,' = !",$),' = !",$*,' = 0)

Selected & willing (!",$&,' = 1)

Selected & unwilling (!",$),' = 1)

Selected & willingness unknown (!",$*,' = 1)

Next episode

Experience

S2V

Q values

S2MLP

S2TD-loss

Training

Figure 2: RL4IM training procedure. The graphs on the left are the set of training graphs G. The process starts by randomly
selecting a graph g ∈ G. The sampled graph constructs a new environment. The RL4IM agent then interacts with it. At each
time step, it observes the state from the environment, and selects the next node (based on its Q-function) if the budget is not
used, or otherwise reaches the terminal state. It then selects the next graph and the training iterates. Meanwhile, the trajectory
data are fed into the replay buffer, which is then used to compute the TD loss for updating the Q-function (on the right).

4 RL4IM

Inspired by [Khalil et al., 2017, Nazari et al., 2018, Deudon
et al., 2018, Bengio et al., 2020] that use RL and graph
embedding to address combinatorial optimization problem
on graphs, we design Reinforcement Learning for Influence
Maximization (RL4IM), a new RL-based algorithm that ad-
dresses the contingency-aware IM problem. RL4IM exploits
two significant properties in the underlying problem: 1) The
influence function is submodular; 2) The state transition
probability, i.e., the probability q of a node willing to be
a seed is known a priori, which can be estimated using
historical data.

4.1 RL4IM ARCHITECTURE

Figure 2 shows the overall architecture of RL4IM. The
graphs on the left are the set of training graphs G. The
process starts by randomly selecting a graph g from the set
of training graphs. Each sampled training graph constructs
an environment, which defines a new MDP as described in
Section 3.2. Given the environment, the RL4IM agent then
interacts with it in discrete time steps. At each time step
(t, b), it observes the state Xt,b from the environment, and
decides whether the budget of selecting the seed nodes (i.e.,
T ×B) is spent. If not, the RL4IM agent will determine the
next seed to select based on its learned policy π(at,b|Xt,b),
which is a probability distribution over the feasible action
space given the current state Xt,b that trades off exploiting
a node with an estimated high reward and exploring nodes
that could potentially have higher reward. If the budget is
spent, then it reaches the terminal state for this episode. The
RL4IM agent will then select the next graph and the training
procedure iterates until its policy reaches convergence.

In Q-learning [Watkins, 1989], the value of a node/action
is measured using the Q-function. The Q-function is usu-
ally estimated using the Bellman equation: Q(Xt,b, at,b) =

r(Xt,b, at,b) + γ arg maxat′,b′ Q(Xt′,b′ , at′,b′), where γ is
the discount factor. DQN [Mnih et al., 2013, 2015] im-
proves vanilla Q-learning by using deep neural networks
as the function approximator, along with other techniques
like experience replay, which stores the historical training
trajectories in a replay bufferM and updates the Q-function
by minimizing the loss function (Q̂−Q)2 with batch data
from the replay buffer using gradient descent.

We follow Khalil et al. [2017], Li et al. [2018] and gen-
eralize the learned policies to unseen test graphs using
graph/node embedding techniques [Dai et al., 2016, Kipf
and Welling, 2016] as the function approximator. Essen-
tially, graph/node embedding takes input an attributed ma-
trix (the state Xt,b and the action at,b in our case) as
well as the adjacency matrix G and maps it to an em-
bedding space. It aggregates the neighborhood informa-
tion from the adjacency matrix. We omit their explicit
form, and represent them with a generic form as f(Xt,b, G)
and g(at,b, G). In this way, the Q-function is represented
as: Q(Xt,b, at,b) = MLP (f(Xt,b, G), g(at,b, G)), where
MLP (·) means multi-layer perceptron. Alg. 1 shows the
pseudo-code of RL4IM’s training process, where the key
novel components are state-abstraction and reward shaping.

4.2 STATE ABSTRACTION

We use a 3 × |V | matrix to capture all the information
of the current state. Because only a small subset of nodes
are selected as seed nodes, the number of 1’s is bounded
by the total budget T × B. Moreover, the 3rd dimension
contains the status of nodes at only one intervention round,
and is bounded by the budget B at each intervention round.
Therefore, the state matrix is extremely sparse and makes
learning rather inefficient. To address this issue, instead of
assuming that we do not know about the state-transition
model – as typical model-free RL methods do – we exploit
the fact that the transition model is actually known. That is,

Algorithm 1: RL4IM training
1 Initialize replay bufferM, Q-function Qθ(X̄t,b, at,b)
2 for episode: 1 to #episodes do
3 Draw a graph G ∈ G
4 Get initial state X1,1 = 0
5 for t = 1 . . . T do
6 for b = 1 . . . B do
7 Get abstracted state X̄t,b ← X1

t,b + qX3
t,b

8 Get action from policy
at,b ← arg maxQθ(at,b|X̄t,b) with
probability 1− ε or otherwise random

9 Play at,b, get surrogate reward r̃(Xt,b, at,b)
with Eq.(11)

10 if b<B then Xt′,b′ ← Xt,b+1 with Eq.(2);
11 else Xt′,b′ ← Xt+1,1 with Eqs.(3)-(4);
12 Add new memory to replay buffer:

M =M∪ (X̄t,b, at,b, r̃(Xt,b, at,b), Xt′,b′)
13 Update θ using sampled memories fromM
14 return Qθ(X̄t,b, at,b)

we know the probability q that a node is willing to be seed,
which can usually be learned from historical data.4 More
specifically, we use a more compact vector X̄t,b ∈ R1×|V |,
that performs a state abstraction to Xt,b:

X̄t,b = X1
t,b + qX3

t,b (5)

By multiplying the 3rd dimension with the probability q, the
intuition is to use this prior knowledge to better reflect the
“expected” contribution of the corresponding node. Note that
in the abstracted state, the information about the nodes that
are selected but are unwilling to be seeds are not tracked. To
keep track of this information, we maintain a feasible action
set that is updated at each time step. The set is initialized
as the entire set of nodes of the graph. In every time step,
whenever a node is selected, it will be removed from the set
so that it is no longer feasible in future time steps.

4.3 REWARD SHAPING

As discussed in Section 3.2, to mitigate the reward sparse-
ness issue, existing works [Li et al., 2019, Tian et al., 2020,
Manchanda et al., 2020] use the marginal contribution of a
newly selected node as the immediate reward at the current
time step. However, this is infeasible in our problem when
there is uncertainty about the nodes’ willingness status in
each main step. A straightforward way of handling it is just
to assume that all the nodes in the current main step are
willing to be seeds, and calculate the marginal contribution
with respect to all these nodes. However, due to submodu-
larity of the influence function, this incurs underestimation
of a new node’s marginal contribution. As discussed previ-
ously, we have prior knowledge about the node willingness
status transition probability q. We then use it to explicitly

4We do not know its realization till the main step ends, though.

represent the expected marginal contribution of a new node.
Recall that Āt denotes the realization of the main step action
At. Let Āt,b be the realization of sub-steps at,1 to at,b−1

(or equivalently X3
t,b, as X3

t,b = at,1 + . . . + at,b), then

B̄t,b :=
∑|V |
v=1 Āt,b means the number of nodes that are

selected from (t, 1) to (t, b) and are willing to be seeds.
Thus, the explicit form of expected marginal contribution
r(Xt,b, at,b) of action at,b is:∑b−1

β=0
qβ(1− q)b−1−β

∑
X3

t,b

δI(G,Xt,b, at,b)
∣∣∣B̄t,b = β,

(6)

where δI(G,Xt,b, at,b) = I(G,Xt,b, at,b) − I(G,Xt,b)
is the marginal contribution of action at,b given the cur-
rent state Xt,b, and

∑
X3

t,b
δI(G,Xt,b, at,b) is the sum of

marginal contribution of action at,b over all possible values
of the state’s 3rd dimension X3

t,b. The condition B̄t,b = β
specifies that the number of nodes that are willing to be
seeds in the realization of X3

t,b. We can see that there are(
b
β

)
such terms in the summation.

In practice, the exact influence values I(G,Xt,b, at,b) and
I(G,Xt,b) are not known, and must be estimated by run-
ning multiple influence spread simulations over the graph G.
Therefore, it becomes computationally infeasible to enumer-
ate all the possible combinations of X3

t,b at each sub-step,
especially when the budget B at each main step is large.
This becomes a major obstacle for RL, as it usually requires
a large number of training samples (time steps) to learn.

To overcome this obstacle, we notice that the influence func-
tion I(G,S) is usually submodular [Kempe et al., 2003],
meaning that the marginal contribution of a node v when
being added to an existing set of nodes S, is no larger than
that when it is added to subset S′ ⊆ S, i.e.,

I(G,S∪{v})−I(G,S)≤I(G,S′∪{v})−I(G,S′) (7)

At each time step (t, b), we use δI0 to denote the marginal
contribution of an action/node at,b when no node selected
from (t, 1) to (t, b − 1) is willing to be a seed, and use
δIb−1 to denote the marginal contribution of an action at,b
when all of these nodes are willing to be seeds. That is,
δI0 = I(G,Xt,b, at,b) − I(G,Xt,b)

∣∣∣B̄t,b = 0, δIb−1 =

I(G,Xt,b, at,b)− I(G,Xt,b)
∣∣∣B̄t,b = b− 1. Following the

submodularity property of the influence function, we have

Lemma 1 At sub-step (t, b), the marginal contribution of
any action is bounded by δI0 and δIb−1:

δIb−1 ≤ δI(G,Xt,b, at,b) ≤ δI0 (8)

Proof 1 According to the submorularity property of the
influence function, i.e., for any subset S′ ⊆ S,

I(G,S ∪ {v})− I(G,S) ≤ I(G,S′ ∪ {v})− I(G,S′)

Recall that Ot denotes the set of nodes that are willing to
be seeds at round t, then O1 ∪ . . . ∪ Ot−1 denotes the set
of nodes that are willing to be seeds before t. We denote
St,b as the set of nodes that are selected in t before b, and
Ot,b as the set of nodes that are willing to be seeds at round
t before b. Because for any Ot,b, there is ∅ ⊆ Ot ⊆ St,b.
Therefore O1 ∪ . . . ∪ Ot−1 ⊆ O1 ∪ . . . ∪ Ot−1 ∪ Ot,b ⊆
O1 ∪ . . . ∪Ot−1 ∪ St,b. By definition we have Lemma 1.

Using this property, we design a surrogate marginal contri-
bution function of δI(G,Xt,b, at,b), where we assume for
any realization Āt,b of X3

t,b, the marginal contribution of
an action at,b is the same when B̄t,b = β, i.e., for any two
states Xt,b and X ′t,b and their corresponding B̄t,b and B̄′t,b:

B̄t,b = B̄′t,b ⇒
δI(G,Xt,b, a− t, b) = δI(G,X ′t,b, a− t, b)

(9)

This assumption means the marginal contribution of a new
node only depends on how many nodes are willing to be
seeds, not which. We can then denote the marginal contribu-
tion as δIβ . We futher assume that (δI0 . . . δIβ . . . δb−1) is
an arithmetic sequence of common difference, i.e.,

δIβ = δI0 + β∆, (10)

where ∆ := (δIb−1−δI0)/(b−1) is the common difference.
Due to Lemma 1, ∆ ≤ 0.

Theorem 1 With the assumptions in Eqs.(9)-(10), the sur-
rogate marginal contribution of action at,b in Eq.(6) is:

r̃(Xt,b, at,b) = (1− q)δI0 + qδIb−1 (11)

Proof 2 By substituting Eqs.(9)-(10) into Eq.(6), we have

r̃(Xt,b, at,b) =

b−1∑
β=0

qβ(1− q)b−1−β
(
b− 1

β

)
δIβ

=

b−1∑
β=0

qβ(1− q)b−1−β
(
b− 1

β

)
(δI0 + β∆)

=

b−1∑
β=0

qβ(1− q)b−1−β
(
b− 1

β

)
δI0+

∆

b−1∑
β=0

qβ(1− q)b−1−β
(
b− 1

β

)
β

= δI0 + ∆(b− 1)q

= δI0 + q(δIb−1 − δI0)

= (1− q)δI0 + qδIb−1

The 4th equation holds because for arithmetic sequence with
common difference, there is

∑b−1
β=0 q

β(1− q)b−1−β(b−1
β

)
=

1, and
∑b−1
β=0 q

β(1− q)b−1−β(b−1
β

)
β = (b− 1)q.

Despite the simple form, we have the following two desir-
able properties of the surrogate reward function.

Theorem 2 Using the surrogate marginal contribution in
Eq.(11), the computational complexity at each step (t, b)
reduces from O(2b) to O(1).

Proof 3 Because for each B̄t,b = β, we need to calculate
the marginal contribution

(
b−1
β

)
times, the total number of

of calculations is then 2×
∑b−1
β=0

(
b−1
β

)
= 2b ∼ O(2b). The

number 2 at the LHS of the equation means calculating once
for both the minuend and the subtrahend. On the other hand,
calculating Eq.(11) requires only calculating 2 × 2 = 4
influence values, which is of order O(1) as it is a constant.

Theorem 3 The gap between the surrogate immediate re-
ward in Eq.(11) and the original reward in Eq.(6) is
bounded by max{(q− (1− q)b−1)(δI0 − δIb−1), (1− q−
qb−1)(δI0 − δIb−1)}.

Proof 4 The worst case happens when 1) for all b′ < b− 1,
there is δI(G,Xt,b, at,b′) = δI0, or 2) for all b′ > 1, there
is δI(G,Xt,b, at,b′) = δIb−1. In case 1), the gap between
the exact expected marginal influence and our designed
approximated one is:

b−1∑
β=0

qβ(1− q)b−1−β
(
b− 1

β

)
[δI0 − δIβ]

− (1− q)b−1δI0 + (1− q)b−1δIb−1

= δI0 − (1− q)δI0 − qδIb−1 − (1− qb−1(δI0 − δIb−1)

= (q − (1− q)b−1)(δI0 − δIb−1)

In case 2), the gap is:

b−1∑
β=0

qβ(1− q)b−1−β
(
b− 1

β

)
[δIβ − δIb−1]

− qb−1δI0 + qb−1δIb−1

= (1− q)δI0 + qδIb−1 − δIb−1 − qb−1(δI0 − δIb−1)

= (1− q − qb−1)(δI0 − δIb−1)

The bound is then max{(q−(1−q)b−1)(δI0−δIb−1), (1−
q − qb−1)(δI0 − δIb−1)}.

Theorem 2 is critical as it makes the calculation of expected
reward in our setting feasible. Meanwhile, Theorem 3 pro-
vides a guarantee to the approximation. It is worth noting
that though the bound could be arbitrarily bad when q → 0
or q → 1, in practice this is rare. Moreover, the worst cases
described in the proof are very extreme cases. Empirical
results show that even when q = 0.2 or 0.8, RL4IM still
practically works well.

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15

Ex
pe

ct
ed

 In
flu

en
ce

Validation Graph #1

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15
Validation Graph #2

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15
Validation Graph #3

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15
Validation Graph #4

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15
Validation Graph #5

I0 Ib 1 RL4IM RL4IM w/o state abstraction

Figure 3: Validation curve on the 5 validation graphs during training for Q1. Shaded area indicates one standard deviation.

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15

Ex
pe

ct
ed

 In
flu

en
ce

Validation Graph #1

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15
Validation Graph #2

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15

Validation Graph #3

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15
Validation Graph #4

0 400 800 1.2K 1.6K 2K
Train Steps

0.05

0.10

0.15

Validation Graph #5
#Graph=10 #Graph=50 #Graph=100 #Graph=200 #Graph=500

Figure 4: Validation curve on the 5 validation graphs for Q2. Shaded area indicates one standard deviation.

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

Environment To evaluate the performances of different
methods, we generate synthetic graphs using the powerlaw
graphs [Onnela et al., 2007], which is the Barabási–Albert
(BA) growth model with an extra step that each random
edge is followed by a chance of making an edge to one of its
neighbors too. The average degree of a node is set to 3. The
probability of adding a triangle after adding a random edge
is set to 0.05. We will vary 1) the number of training graphs,
2) the willingness probability q, 3) intervention rounds T
and the per-round budget B, 4) the graph sizes |V |, and
evaluate different methods under these varied settings. The
belief propagation probability is of IM is set to 0.1. To get
an influence number, the IM simulator runs 100 times and
returns an average. All experiments are run on a Dell DSS
8440 Cauldron node, with a virtual environment with 2 Intel
Xeon Gold 6148 2.4G CPU cores, 5G RAM, 1 NVIDIA
Tesla V100 32G GPU, EDR Infiniband.

Baselines The baselines include 1) a greedy algorithm that
adaptively selects seeds based on observation of the will-
ingness status of selected nodes in previous rounds. It is
part of the CHANGE algorithm [Wilder et al., 2018] that is
used in HIV prevention with node willingness uncertainty.
2) S2V-DQN-IM which is adapted from S2V-DQN Khalil
et al. [2017] that combines RL with graph embedding. Note
that this is the underlying architecture of recent works on
RL for IM [Li et al., 2019, Tian et al., 2020]. We have added
the state-abstraction component to it as we will show that
the version without it barely converges well. The major
difference between S2V-DQN-IM and RL4IM is it does
not use our reward shaping technique, but estimates the re-
ward using δIb−1, i.e., assuming no uncertainty in a node’s

willingness. 3) Random which chooses nodes randomly.

Evaluation setting In evaluation, we first generate a set of
training graphs, and then generate another set of 5 held-out
graphs that are used as validation set. The validation process
will be activated approximately every 20 time steps (i.e., a
checkpoint). During validation, it will run 20 episodes for
each graph. The averaged reward over 20× 5 = 100 runs
will be used as the metric to select the best hyperparameters
as well as the model at the best checkpoint. The model
selected using the validation set will then be evaluated in
the test phase. During testing, 10 graphs will be generated
that are unseen either in training or validation graphs. Each
method will be run 20 times on a graph, totalling 20× 10 =
200 runs for one problem setting.

For both S2V-DQN-IM and RL4IM, the following parame-
ters are set to the same: memory size is 4096, 2) batch size
is 32, 3) maximal training time steps is set to 2000, 4) the
discount factor is 0.99, 5) the q-networks is an S2V-based
graph embedding layer followed by a 128-neuron MLP
layer, 6) the optimizer is Adam [Kingma and Ba, 2015]. The
other parameters, such as learning rate, exploration rate ε
and its decay rate are optimized from the validation set.

5.2 RESULTS & DISCUSSIONS

The following values are set to default unless being evalu-
ated: |V | = 200, T = 2, B = 4, #training graphs = 200;
q = 0.6. We are interested in the following questions.

Q1: How does each new component of RL4IM affect the
performance? Figure 3 shows the ablation study results. By
removing either state-abstraction or our proposed reward
shaping technique, the RL training becomes very unstable,
or converges at a sub-optimal point. If we remove state-
abstraction, then the state is very sparsely represented, and

-0.05

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8

Random S2V-DQN-IM CHANGE RL4IM

(a) vary q

0

0.05

0.1

0.15

8 4 2 1

Random S2V-DQN-IM CHANGE RL4IM

(b) vary T

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

50 100 200 500 1000

Random S2V-DQN-IM CHANGE RL4IM

(c) vary |V |

Figure 5: Performance of different methods on unseen test graphs. The x-axis is the value of the underlying setting, and the
y-axis is the expected normalized influence (w.r.t. the number of nodes) averaged over 10× 20 = 200 runs.

thus makes it hard for the graph embedding layer to effec-
tively learn the optimal weights. On the other hand, by using
either δI0 or δIb−1 as the reward, it leads to either over or
under-estimation (which is the practice of existing works
on RL for IM [Li et al., 2019, Tian et al., 2020, Manchanda
et al., 2020] that do not consider node uncertainty.

Q2: Does the number of training graphs affect training
performance? To see whether and how the number of train-
ing graphs affect the performance, we show the validation
curve during training, as in Figure 4. It shows that by in-
creasing the number of training graphs, the validation curve
tends to converge at a more stable point. This is because
with larger training graph pool, the RL agent is exposed
to more environments and thus tends to generalize better
among unseen graphs. Based on this set of experiments,
from now on all the experiments use 200 training graphs.

Q3: Does RL4IM work well for different uncertainty
values q? Figure 5(a) shows that when q increases, i.e.,
when nodes are more likely to be seeds when being selected,
the expected influence grows higher. This is intuitive as the
expected number of seed nodes becomes larger w.r.t. larger
q values. Both RL4IM and CHANGE are better and more
stable across different q values, which are approximately
twice the values of Random. The performance of S2V-DQN-
IM is unstable as it uses a reward function that is far from
the expected ground truth value.

Q4: What if we decrease T until 1? In this setting, we
fix T × B = 8, and evaluate T = 8, 4, 2, 1. Note that
when T = 1, it is essentially a single round IM problem.
Figure 5(b) shows the comparison results. This shows that
RL4IM works well for single round IM problem as well.
Similarly, CHANGE and RL4IM are the two best methods,
while S2V-DQN-IM appears unstable at different settings.

Q5: How does performance of RL4IM vary across dif-
ferent graph sizes? In this set of experiments we vary graph
sizes whtin [50, 100, 200, 500, 1000]. Figure 5(c) shows that
the normalized influence value decreases when the number
of nodes |V | increases. This is because the influence budget
is fixed as 2 × 4 = 8. When |V | increases, the portion of

nodes getting influence decreases. Similarly, CHANGE and
RL4IM perform the best among all methods.

From questions 3-5, the key takeaway is that RL4IM works
robustly across different settings. RL4IM is slightly better
than CHANGE. This is potentially because RL4IM consid-
ers proactively the unwillingness of a node in its reward
shaping component, whereas CHANGE only reactively
adapts to realizations of the willingness status of nodes.
Nonetheless, our main argument is that RL4IM, while per-
forming as good as CHANGE, uses negligible runtime dur-
ing test phase, and is therefore the better alternative for
scenarios with low-resource computing. For example, once
being trained, the policies are returned by RL within seconds
even when the RL policy is run on a normal laptop.

6 CONCLUSION

We study the contingency-aware IM problem where a node’s
willingness to be a seed is uncertain. The state-of-the-art
uses greedy algorithms to address the problem, but its slow
run times are a barrier to transitioning this approach to low-
resource settings as with non-profits serving marginalized
populations. We propose a new learning-based perspective
of solution to this problem using RL, so that it can out-
put a seed selection strategy on a laptop within seconds at
test time. Our major technical innovation is a theoretically
grounded new algorithm, RL4IM, that exploits the prop-
erties of the underlying problem. Empirical results show
that it matches the influence spread of the state-of-the-art,
while having the advantage of negligible runtime during
the test phase, a feature that is critical to low-resource non-
profits. Our work is an example of RL for social good. We
hope to shed some light to broader research areas in the
low-resource computing paradigm.

Acknowledgements

This work was supported by the Army Research Office
(MURI W911NF1810208). Chen was supported by the Cen-
ter for Research on Computation and Society.

References

Khurshed Ali, Chih-Yu Wang, and Yi-Shin Chen. Boosting
reinforcement learning in competitive influence maxi-
mization with transfer learning. In WI, pages 395–400,
2018.

Raghav Awasthi, Prachi Patel, Vineet Joshi, Shama Karkal,
and Tavpritesh Sethi. Learning explainable interventions
to mitigate hiv transmission in sex workers across five
states in india. arXiv preprint arXiv:2012.01930, 2020.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi,
and Samy Bengio. Neural combinatorial optimiza-
tion with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Ma-
chine learning for combinatorial optimization: A method-
ological tour d’horizon. European Journal of Operational
Research, 2020.

Christian Borgs, Michael Brautbar, Jennifer Chayes, and
Brendan Lucier. Maximizing social influence in nearly
optimal time. In SODA, pages 946–957, 2014.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embed-
dings of latent variable models for structured data. In
ICML, pages 2702–2711, 2016.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri
Adulyasak, and Louis-Martin Rousseau. Learning heuris-
tics for the tsp by policy gradient. In CPAIOR, pages
170–181, 2018.

Pedro Domingos and Matt Richardson. Mining the network
value of customers. In KDD, pages 57–66, 2001.

Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of
the network: A complex systems look at the underlying
process of word-of-mouth. Marketing Letters, 12(3):211–
223, 2001.

Daniel Golovin and Andreas Krause. Adaptive submod-
ularity: Theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelligence
Research, 42:427–486, 2011.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley,
Ivo Danihelka, Agnieszka Grabska-Barwińska, Ser-
gio Gómez Colmenarejo, Edward Grefenstette, Tiago
Ramalho, John Agapiou, et al. Hybrid computing using a
neural network with dynamic external memory. Nature,
538(7626):471–476, 2016.

Jonathan Guo and Bin Li. The application of medical artifi-
cial intelligence technology in rural areas of developing
countries. Health Equity, 2(1):174–181, 2018.

Kai Han, Keke Huang, Xiaokui Xiao, Jing Tang, Aixin
Sun, and Xueyan Tang. Efficient algorithms for adaptive
influence maximization. VLDB, 11(9):1029–1040, 2018.

Keke Huang, Jing Tang, Kai Han, Xiaokui Xiao, Wei Chen,
Aixin Sun, Xueyan Tang, and Andrew Lim. Efficient
approximation algorithms for adaptive influence maxi-
mization. The VLDB Journal, pages 1–22, 2020.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bres-
son. An efficient graph convolutional network tech-
nique for the travelling salesman problem. arXiv preprint
arXiv:1906.01227, 2019.

Harshavardhan Kamarthi, Priyesh Vijayan, Bryan Wilder,
Balaraman Ravindran, and Milind Tambe. Influence max-
imization in unknown social networks: Learning policies
for effective graph sampling. In AAMAS, pages 575–583,
2020.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing
the spread of influence through a social network. In KDD,
pages 137–146, 2003.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and
Le Song. Learning combinatorial optimization algorithms
over graphs. In NeurIPS, pages 6348–6358, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Jihoon Ko, Kyuhan Lee, Kijung Shin, and Noseong Park.
Monstor: An inductive approach for estimating and
maximizing influence over unseen social networks. In
ASONAM, 2020.

Wouter Kool, Herke van Hoof, and Max Welling. Attention,
learn to solve routing problems! In ICLR, 2018.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos
Faloutsos, Jeanne VanBriesen, and Natalie Glance. Cost-
effective outbreak detection in networks. In KDD, pages
420–429, 2007.

Hui Li, Mengting Xu, Sourav S Bhowmick, Changsheng
Sun, Zhongyuan Jiang, and Jiangtao Cui. Disco: Influ-
ence maximization meets network embedding and deep
learning. arXiv preprint arXiv:1906.07378, 2019.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinato-
rial optimization with graph convolutional networks and
guided tree search. In NeurIPS, pages 539–548, 2018.

Su-Chen Lin, Shou-De Lin, and Ming-Syan Chen. A
learning-based framework to handle multi-round multi-
party influence maximization on social networks. In KDD,
pages 695–704, 2015.

Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Me-
dya, Sayan Ranu, and Ambuj Singh. Gcomb: Learning
budget-constrained combinatorial algorithms over billion-
sized graphs. NeurIPS, 33, 2020.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning scheduling algorithms for data processing clus-
ters. In SIGCOMM, pages 270–288, 2019.

Hila Mehr, H Ash, and D Fellow. Artificial intelligence for
citizen services and government. Ash Cent. Democr. Gov.
Innov. Harvard Kennedy Sch., no. August, pages 1–12,
2017.

Slava Jankin Mikhaylov, Marc Esteve, and Averill Campion.
Artificial intelligence for the public sector: opportunities
and challenges of cross-sector collaboration. Philosophi-
cal Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2128):20170357,
2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč,
and Lawrence V Snyder. Reinforcement learning for
solving the vehicle routing problem. In NeurIPS, pages
9861–9871, 2018.

J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Sz-
abó, David Lazer, Kimmo Kaski, János Kertész, and A-L
Barabási. Structure and tie strengths in mobile communi-
cation networks. Proceedings of the National Academy
of Sciences, 104(18):7332–7336, 2007.

Han-Ching Ou, Haipeng Chen, Shahin Jabbari, and Milind
Tambe. Active screening for recurrent diseases: A re-
inforcement learning approach. In AAMAS, pages 992–
1000, 2021.

Robin Petering, Nicholas Barr, Ajitesh Srivastava, Laura
Onasch-Vera, Nicole Thompson, and Eric Rice. Exam-
ining impacts of a peer-based mindfulness and yoga in-
tervention to reduce interpersonal violence among young
adults experiencing homelessness. Journal of the Society
for Social Work and Research, 12(1):000–000, 2021.

Wei Qiu, Haipeng Chen, and Bo An. Dynamic electronic toll
collection via multi-agent deep reinforcement learning
with edge-based graph convolutional networks. In IJCAI,
pages 4568–4574, 2019.

Eric Rice, Laura Onasch-Vera, Graham Diguiseppi, Chyna
Hill, Robin Petering, Nicole Wilson, Darlene Woo, Nicole
Thompson, Milind Tambe, Bryan Wilder, et al. Using
artificial intelligence to augment network-based, hiv pre-
vention for youth experiencing homelessness. In APHA’s
2020 VIRTUAL Annual Meeting and Expo (Oct. 24-28).
American Public Health Association, 2020.

Ajitesh Srivastava, Robin Petering, Nicholas Barr, Rajgopal
Kannan, Eric Rice, and Viktor K Prasanna. Network-
based intervention strategies to reduce violence among
homeless. Social Network Analysis and Mining, 9(1):
1–12, 2019.

Lichao Sun, Weiran Huang, Philip S Yu, and Wei Chen.
Multi-round influence maximization. In KDD, pages
2249–2258, 2018.

Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence
maximization in near-linear time: A martingale approach.
In SIGMOD, pages 1539–1554, 2015.

Shan Tian, Songsong Mo, Liwei Wang, and Zhiyong Peng.
Deep reinforcement learning-based approach to tackle
topic-aware influence maximization. Data Science and
Engineering, pages 1–11, 2020.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer
networks. In NeurIPS, pages 2692–2700, 2015.

Christopher John Cornish Hellaby Watkins. Learning from
delayed rewards, 1989.

Bryan Wilder, Laura Onasch-Vera, Juliana Hudson, Jose
Luna, Nicole Wilson, Robin Petering, Darlene Woo,
Milind Tambe, and Eric Rice. End-to-end influence max-
imization in the field. In AAMAS, volume 18, pages
1414–1422, 2018.

Bryan Wilder, Laura Onasch-Vera, Graham Diguiseppi,
Robin Petering, Chyna Hill, Amulya Yadav, Eric Rice,
and Milind Tambe. Clinical trial of an ai-augmented in-
tervention for hiv prevention in youth experiencing home-
lessness. In AAAI, pages 14948–14956, 2021.

Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8(3-4):229–256, 1992.

Amulya Yadav, Hau Chan, Albert Xin Jiang, Haifeng Xu,
Eric Rice, and Milind Tambe. Using social networks to
aid homeless shelters: Dynamic influence maximization
under uncertainty. In AAMAS, pages 740–748, 2016.

Amulya Yadav, Ritesh Noothigattu, Eric Rice, Laura
Onasch-Vera, Leandro Soriano Marcolino, and Milind
Tambe. Please be an influencer? contingency-aware influ-
ence maximization. In AAMAS, pages 1423–1431, 2018.

	1 Introduction
	2 Related Work
	3 Contingency-Aware IM
	3.1 Problem Setup
	3.2 MDP Formulation

	4 RL4IM
	4.1 RL4IM Architecture
	4.2 State abstraction
	4.3 Reward shaping

	5 Experiment
	5.1 Experiment Settings
	5.2 Results & Discussions

	6 Conclusion

