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Abstract
As machine learning black boxes are increasingly
being deployed in critical domains such as health-
care and criminal justice, there has been a growing
emphasis on developing techniques for explaining
these black boxes in a post hoc manner. In this
work, we analyze two popular post hoc interpreta-
tion techniques: SmoothGrad which is a gradient
based method, and a variant of LIME which is a
perturbation based method. More specifically, we
derive explicit closed form expressions for the ex-
planations output by these two methods and show
that they both converge to the same explanation
in expectation, i.e., when the number of perturbed
samples used by these methods is large. We then
leverage this connection to establish other desir-
able properties, such as robustness, for these tech-
niques. We also derive finite sample complexity
bounds for the number of perturbations required
for these methods to converge to their expected
explanation. Finally, we empirically validate our
theory using extensive experimentation on both
synthetic and real world datasets.1

1. Introduction
Over the past decade, predictive models are increasingly be-
ing considered for deployment in high-stakes domains such
as healthcare and criminal justice. However, the success-
ful adoption of predictive models in these settings depends
heavily on how well decision makers (e.g., doctors, judges)
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can understand and consequently trust their functionality.
Only if decision makers have a clear picture of the behav-
ior of these models can they assess when and how much
to rely on these models, detect potential biases in them,
and develop strategies for improving them (Doshi-Velez &
Kim, 2017). However, the increasing complexity as well
as the proprietary nature of predictive models is making it
challenging to understand these complex black boxes, thus
motivating the need for tools and techniques that can explain
them in a faithful and human interpretable manner.

Several techniques have been recently proposed to construct
post hoc explanations of complex predictive models. While
these techniques differ in a variety of ways, they can be
broadly categorized into perturbation vs. gradient based
techniques, based on the approaches they employ to generate
explanations. For instance, LIME and SHAP (Ribeiro et al.,
2016; Lundberg & Lee, 2017) are called perturbation based
methods because they leverage perturbations of individual
instances to construct interpretable local approximations
(e.g., linear models), which in turn serve as explanations of
individual predictions of black box models. On the other
hand, SmoothGrad, Integrated Gradients and GradCAM (Si-
monyan et al., 2014; Sundararajan et al., 2017; Selvaraju
et al., 2017; Smilkov et al., 2017) are referred to as gradient
based methods since they leverage gradients computed at
individual instances to explain predictions of complex mod-
els. Recent research has focused on empirically analyzing
the behavior of perturbation and gradient based post hoc
explanations. For instance, several works (Ghorbani et al.,
2019; Slack et al., 2020a; Dombrowski et al., 2019; Adebayo
et al., 2018; Alvarez-Melis & Jaakkola, 2018) demonstrated
that explanations generated using perturbation based tech-
niques such as LIME and SHAP may not be robust, i.e.,
the resulting explanations may change drastically with very
small changes to the instances. Furthermore, Adebayo et al.
(2018) showed that gradient based methods such as Smooth-
Grad and GradCAM may not generate interpretations that
are faithful to the underlying models.

While several perturbation and gradient based explanation
techniques have been proposed in literature and the afore-
mentioned works have empirically examined their behavior,
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there is very little work that focuses on developing a rig-
orous theoretical understanding of these techniques and
systematically exploring the connections between them. Re-
cently, Levine et al. (2019) theoretically and empirically
analyzed the robustness of a sparsified version of Smooth-
Grad but their analysis requires several key modifications to
the original SmoothGrad, whereas we study SmoothGrad
in its original form. Even more recently, Garreau & von
Luxburg (2020) provided closed form solutions for and theo-
retically analysed Tabular LIME (LIME restricted to tabular
data). We study a simpler, non-discretized variant of LIME
that benefits by exhibiting several desirable properties, such
as being provably robust, unlike the setting in Garreau &
von Luxburg (2020). In addition, these works do not explore
deeper connections between the two classes of techniques.

In this work, we initiate a study to unify perturbation and
gradient based post hoc explanation techniques. To the
best of our knowledge, this work makes the first attempt at
establishing connections between these two popular classes
of explanation techniques. More specifically, we make the
following key contributions:

• We analyze two popular post hoc explanation methods
– SmoothGrad (gradient based) and a variant of LIME
(perturbation based) for continuous data that we refer
to as Continuous LIME, or C-LIME for short. We
derive explicit closed form expressions for the expla-
nations output by these methods and demonstrate that
they converge to the same output (explanation) in ex-
pectation, i.e., when the number of perturbed samples
used by these methods is large.

• We then leverage this equivalence result to establish
other desirable properties of these methods. More
specifically, we prove that SmoothGrad and C-LIME
satisfy Lipschitz continuity and are therefore robust
to small changes in the input when the number of per-
turbed samples is large. This work is the first to demon-
strate that a variant of LIME is provably robust.

• We also derive finite sample complexity bounds for the
number of perturbed samples required for SmoothGrad
and C-LIME to converge to their expected output.

• Finally, we prove that both SmoothGrad and C-LIME
satisfy other interesting properties such as linearity.

We carry out extensive experimentation with synthetic and
real world datasets from diverse domains such as online
shopping and finance to analyze the behavior of Smooth-
Grad and C-LIME. Our empirical results not only validate
our theoretical claims but also provide other interesting in-
sights. We observe that both SmoothGrad and C-LIME need
far fewer perturbations (than what our theory predicts) in
practice to converge to their expected output and/or exhibit

robustness. SmoothGrad requires even fewer perturbations
than C-LIME to be robust and also converges faster than
C-LIME.

We also analyze the effects of other parameters such as the
variance of the perturbed samples on the convergence as
well as robustness of these methods, and find that smaller
values of variance enable these methods to converge faster
and exhibit robustness even with fewer perturbed samples.

2. Preliminaries
Let us consider a complex function f : X → Y, where
X ⊆ Rd for some d ∈ N and Y ⊆ R. In this section, we
provide an overview of two popular post hoc explanation
techniques, namely, SmoothGrad and LIME. Both Smooth-
Grad and LIME are local explanation techniques i.e., they
explain individual predictions f(x) of a given model f . Fur-
thermore, both these methods fall under the broad category
of feature attribution methods which determine the influ-
ence of each feature on a given prediction f(x). Below,
we describe these methods in detail. We then lay down the
setting and assumptions for this work.

2.1. SmoothGrad

Gradient based explanations are designed to explain predic-
tions f(x) for any x ∈ X , by computing the derivative of
f(x) with respect to each feature of x (Ancona et al., 2018).

Vanilla gradient based explanations are often noisy, high-
lighting random features and ignoring important ones (Ade-
bayo et al., 2018). A convincing explanation for the noise in
gradient based saliency maps is that the derivative of f may
fluctuate sharply at small scales. Hence, the gradient at any
given point is less meaningful than the average of gradients
at local neighboring points. This idea has led to Smooth-
Grad (Smilkov et al., 2017), which in practice reduces the
noise in explanations compared to vanilla gradients.

More concretely, let S(x) (or simply S) denote a set of
inputs in the neighborhood of x. Using S, the (empirical)
explanation of SmoothGrad for f at point x is defined to be

SGfS(x) =
1

|S|
∑
a∈S
∇f(a),

where ∇f is the gradient of f . When S is drawn from a
distribution P (x) (or simply P ), the expected explanation
of SmoothGrad for f at input x can be defined by replacing
the sample average with expectation:

SGfP (x) = Ea∼P [∇f(a)] .

Throughout this paper, we use subscripts P and S to distin-
guish between expected values and empirical averages in
our quantities of interest.



2.2. LIME

Another class of explainability models are perturbation
based techniques. LIME is a popular perturbation based
method that aims to explain the prediction f(x), by learning
an interpretable model that approximates f locally around
x (Ribeiro et al., 2016). To obtain a local explanation, LIME
creates perturbed examples in the local neighbourhood of x,
observes the predictions of f for these examples, and trains
an interpretable model on these labeled examples.

More concretely, let S denote a set of inputs in the neigh-
borhood of x and π : X × X → R≥0 a distance metric
over X . Let G be a class of explanations (or models) and
for any g ∈ G, Ω(g) denote the complexity of g e.g., the
complexity of a linear explanation can be measured as the
number of non-zero weights. The (empirical) explanation
of LIME can be written as

LIMEfS(x) = arg min
g∈G

{
Lx (f, g, S, π) + Ω (g)

}
,

where the loss function L is defined as

Lx (f, g, S, π) =
1

|S|
∑
a∈S

π (x, a) [f(a)− g(a)]
2
.

When S is drawn from a distribution P , the expected expla-
nation of LIME for f at input x can be written by replacing
the sample average in the loss function with expectation.
We call this quantity LIMEfP (x).

Remark. The default implementation of LIME has an addi-
tional discretization step for the features before optimization.
Our definition of LIME here ignores this discretization.

2.3. Our Setting and Assumptions

In our setting, we assume X = Rd, i.e., we assume the
features to be continuous. Different choices of Y in our
setting lead to different learning settings. Y = R leads to
regression. Y = [0, 1] corresponds to (binary or multi-class)
classification when f(x) is interpreted as the probability of
f belonging to a specific class.

For any point x, in both SmoothGrad and our variant of
LIME (discussed below), we assume the sample S in the
neighborhood of x is drawn from N (x,Σ), where Σ = σ2I
for some σ2 > 0. This is a standard choice in practice
(Garreau & von Luxburg, 2020; Smilkov et al., 2017).2

C-LIME. We use a variant of LIME for continuous fea-
tures which we refer to as Continuous-LIME (or simply
C-LIME). For any given function f , input point x and a
sample S of inputs in the neighborhood of x, the (empirical)

2Many of our results hold for arbitrary Σ. We point these out
explicitly when we discuss our results.

explanation of C-LIME can be written as

C-LIMEfS(x) = arg min
g∈G

1

|S|
∑
a∈S

[f(a)− g(a)]
2
,

where G is the class of linear models.

We now highlight the main differences between LIME and
C-LIME: (i) C-LIME assumes that the distance metric π is
a constant function that always outputs 1. Since C-LIME
operates on continuous features and uses a Gaussian distri-
bution centered at x to sample perturbations (unlike LIME
which samples perturbations uniformly at random), the re-
sulting perturbations are more likely to be closer to x and
do not need to be weighted when fitting a local linear model.
(ii) While LIME allows for a general class of simple expla-
nations (or models) G, we restrict ourselves only to linear
models for C-LIME since it focuses on continuous features.
(iii) Lastly, we exclude the regularizer Ω from C-LIME i.e.,
we set Ω(g) = 0 for all g ∈ G. Note that the paper that
proposes LIME also advocates for enforcing sparsity by first
carrying out a feature selection procedure to determine the
top K features and then learning the corresponding weights
via least squares (Ribeiro et al., 2016). See the full version
for a discussion of the regularised version of LIME. Finally,
for ease of exposition, throughout we assume the output of
C-LIME is simply the weights on each feature, and ignore
the intercept term. This can be done without loss of gener-
ality by centering. Moreover, we are only interested in the
learned weights for the features, and not the intercept. For
completeness, all of our proofs are written for the case that
the intercept is present.

When clear from context, we refer to the expected output
of SmoothGrad and C-LIME for explaining a function f
at point x using a Gaussian distribution with mean x and
covariance matrix Σ as SGfΣ and C-LIMEfΣ, respectively.
Moreover, when it is clear from the context we replace the
subscript S to n in all of our quantities of interest to simply
emphasize that the size of sample S is n.

3. Equivalence and Robustness
As our first contribution, in Section 3.1, we show that
SmoothGrad and C-LIME provide identical explanations in
expectation. This establishes a novel connection between
gradient based and perturbation based explanation methods,
which are often studied independently. Using this connec-
tion, in Section 3.2, we prove that both SmoothGrad and
C-LIME are robust, i.e., the explanations provided by these
methods for nearby points do not vary significantly.

3.1. Equivalence

As our first result, in Theorem 1, we show that the expected
output of SmoothGrad and C-LIME are the same for any



function at any given input provided that SmoothGrad and
C-LIME use the same Gaussian distribution for gradient
computation and perturbations, respectively.

Theorem 1. Let f : Rd → R be a function. Then, for any
x ∈ X and any invertible covariance matrix Σ ∈ Rd × Rd

SGfΣ(x) = LIMEfΣ(x) = Σ−1cov (a, f(a)) ,

where a is a random input drawn from N (x,Σ), and
cov(a, f(a)) is a vector with the i’th entry corresponding
to the covariance of f(a) and i’th feature of a.

Proof sketch. We separately derive closed forms for
SmoothGrad and C-LIME. For SmoothGrad we apply a mul-
tivariate version of Stein’s Lemma (Landsman & Nešlehová,
2008; Liu, 1994). The proof for C-LIME uses calculus, and
recovers the explanation of C-LIME by differentiation and
solving for the solution where the gradient is 0. See the full
version for more details.

We point out that Theorem 1 holds for any covariance matrix
and does not require the covariance matrix to be diagonal.
Furthermore, we note that the closed forms for both Smooth-
Grad and C-LIME have a nice structure. For a diagonal Σ,
the i’th coefficient of SmoothGradf (x) and C-LIMEf (x)
depends only on the covariance of f and the i’th feature. In
particular, when Σ = σ2I, then the i’th coefficient is simply
cov(f(a), ai)σ

−2. This term captures the dependence of f
on the i’th feature of the input.

3.2. Robustness

Many interpretability methods come with the drawback that
they are very sensitive to the choice of the point where the
prediction of the function is going to be explained (Alvarez-
Melis & Jaakkola, 2018; Ghorbani et al., 2019). It is hence
desirable to have robust explainability methods where two
nearby points with similar labels have similar explanations.

In this section we show that both SmoothGrad and C-LIME
are robust. The notion of robustness we use is Lipschitz
continuity which is formally defined as follows.

Definition 1. A function h : Rd1 → Rd2 for d1, d2 ∈ N is
L-Lipschitz if there exists a universal constant L ∈ R>0,
such that ‖h(x)−h(x′)‖2 ≤ L‖x−x′‖2 for all x, x′ ∈ Rd1 .

We now formally state our robustness result.

Theorem 2. Let f : Rd → R be a function whose gradient
is bounded by ∇fmax and suppose Σ = σ2I. Then SGfΣ
and C-LIMEfΣ are both L-Lipschitz with L = ∇fmax/(2σ).

Proof sketch. We first prove the Lipschitzness of Smooth-
Grad using the Pinkser and data processing inequalities (van
Erven & Harremos, 2014). Theorem 1 then implies that C-
LIME is also Lipschitz. See the full version for details.

Theorem 2 shows that both SmoothGrad and C-LIME be-
come less robust (i.e., the Lipschitz constants grows) when
explaining functions with larger magnitude of gradients, or
when the variance parameter σ2 used in gradient compu-
tation or perturbations decreases. However, the Lipschitz
constant is independent of the input dimension d.

4. Convergence Analysis
The results in Section 3 prove the equivalence of Smooth-
Grad and C-LIME and also robustness of these techniques
in expectation which corresponds to large sample limits in
practice. Any useful implementation of these techniques is
based on finite number of gradient computations or sample
perturbations. In this section, we derive sample complex-
ity bounds to examine how fast the empirical estimates for
the outputs of SmoothGrad and C-LIME at any given point
will converge to the their expected value. This extends the
implications of the results in Section 3 to practical imple-
mentations of SmoothGrad and C-LIME.

We start by examining how fast the output of SmoothGrad
will converge to its expectation.

Proposition 1. Let f : Rd → R be a function whose gra-
dient is bounded by ∇fmax. Fix x ∈ X , ε > 0 and δ > 0.
Let n ≥ C(∇fmax/ε)

2 ln(d/δ) for some absolute constant
C. Then with probability of at least 1 − δ, over a sample
S of size n from N (x,Σ), for any Σ ∈ Rd, we have that
|SGfΣ(x)− SGfn(x)‖2 ≤ ε.

We next examine how fast the output of C-LIME will con-
verge to its expectation.

Theorem 3. Let f : Rd → [−1, 1] be a function. Fix
x ∈ X , ε > 0 and δ > 0. Let S denote a sample of size n
from N (x,Σ) for Σ = σ2I where

n ≥ C
d ln

(
d
δ

)
min(εσ2, εσ3/‖x‖2, ‖x‖2, 1/σ2)2

,

for some absolute constant C. Then with probability of at
least 1− δ, ‖C-LIMEfΣ(x)− C-LIMEfn(x)‖2 ≤ ε.

Proof sketch. First observe that we can write the output of
C-LIME both in expectation and in finite sample using the
closed-form solution of ordinary least square as follows∥∥∥C-LIMEfΣ(x)− C-LIMEfn(x)

∥∥∥
2

=∥∥∥∥∥E[(aa>)]−1E[af(a)]− (
1

n

∑
b∈S

bb>)−1(
1

n

∑
b∈S

bf(b))

∥∥∥∥∥
2

,

where the expectations are with respect to a ∼ N (x,Σ)
and we use b to index a sampled data point in a sam-
ple S of size n. By algebraic manipulation and applying



Cauchy-Schwartz and triangle inequalities, the term above
is bounded by∥∥∥E [aa>]−1

∥∥∥
2

∥∥∥∥∥E [af(a)]− 1

n

∑
b∈S

bf(b)

∥∥∥∥∥
2

+

∥∥∥∥∥E [aa>]−1 − 1

n

(∑
b∈S

bb>

)−1∥∥∥∥∥
2

∥∥∥∥∥ 1

n

∑
b∈S

bf(b)

∥∥∥∥∥
2

.

Therefore, it suffices to bound each of the 4 terms of the
above equation separately. We show that the first term is
bounded by 1/σ2 using Weyl’s inequality. We then show
that, with high probability, the second term is bounded
by ε/(2σ2) using Union bound, Sub-Gaussian and Cher-
noff concentration inequalities. By applying the Weyl’sm
Cauchy-Schwartz inequalities, Bernstein inequality in the
sub-exponential case for matrices (Tropp, 2012) and co-
variance estimation techniques (Koltchinskii & Lounici,
2017), we show that, with high probability, the third term
is bounded by ε/(4‖x‖2). Finally, we show that the last
term is, with high probability, bounded by 2‖x‖2, by using
Union, Chernoff and Sub-Gaussian concentration bounds as
well as Cauchy-Schwartz and triangle inequality. Multiply-
ing the 4 bounds and applying a Union bound, we witness
the theorem’s claim. See the full version for details.

Fixing σ2 and x, the bound in Theorem 3 has the stan-
dard 1/ε2 dependency on the error parameter ε and ln(1/δ)
dependency on the probability of failure δ. Fixing other
parameters, the sample complexity increases as either σ2

or ‖x‖2 approach 0 or grow larger and larger. In the large
regime, the growth in the sample complexity is in line with
the intuition that accurate estimates under higher variance
scenarios require more samples. In the small regime, in our
analysis, the bound on the norm of the inverse of the product
matrices will grow with a rate that is proportional to σ2 or
1/‖x‖2 causing the growth in the sample complexity. We
empirically study this dependency in Section 6.

5. Additional Properties
In this section we study additional properties that are sat-
isfied by both SmoothGrad and C-LIME. We defer all the
omitted proofs of this section to the full version.

The first property that we study is linearity.

Proposition 2 (Linearity). Fix a covariance matrix Σ ∈
Rd × Rd. For all f, g : Rd → R, d ∈ N and α, β ∈ R

SGαf+βg
Σ = αSGfΣ + βSGgΣ, and,

C-LIMEαf+βg
Σ = αC-LIMEfΣ + βC-LIMEgΣ.

Linearity implies that the explanation of a more complex
function that can be written as a linear combination of two

simpler functions is simply the linear combination of the
explanations of each of the simpler functions. This is use-
ful e.g., in situations where computing explanations are
computationally expensive and new explanations for linear
compositions of functions can be simply derived by linear
composition of the previously computed explanations.

The next property we study is proportionality.
Proposition 3 (Proportionality). Let f : Rd → R be a
linear function of the form f(x) = θ>x+ b for θ ∈ Rd and
b ∈ R. For any x ∈ Rd and Σ ∈ Rd × Rd

SGfΣ(x) = C-LIMEfΣ(x) = k(x)θ,

for some function k : Rd → R.

Proportionality implies that when the underlying function
is linear both SmoothGrad and LIME provide explanations
that are proportional to the weights of the underlying func-
tion. Although explaining the weights of a linear function
with another set of weights might appear unnecessary, pro-
portionality can be interpreted as a sanity check for explain-
ability methods. Garreau & von Luxburg (2020) prove a
weaker version of proportionality for C-LIME, where the
multiplier k might be different for each feature.

An immediate consequence of proportionality is that, in
general, SmoothGrad and C-LIME do not provide sparse
explanations (for e.g., when the underlying function f is
linear and non-sparse). In practice, sparsity can be promoted
by adding a regularizer (i.e., by setting Ω(g) appropriately
in our general setting). We study the regularized version of
C-LIME in the full version.

6. Experiments
In this section we evaluate our theoretical findings empiri-
cally on synthetic and real world datasets. We analyze the
equivalence and robustness of SmoothGrad and C-LIME
with respect to the number of perturbations. Finally we
assess the sensitivity of these results to varying the hyperpa-
rameters such as the variance σ2 in perturbations.

6.1. Experimental Setup

Datasets: We generate a synthetic dataset and use 2 real
world classification datasets from the UCI Machine Learn-
ing Repository (Dua & Graff, 2017).

1. Simulated. We simulate a 1000 sample classification
dataset with a 2 dimensional feature space. We fix y ∈
{0, 1} randomly for each instance and sample x ∈ R2 from
N (µy, I2) where µ0 = [−1,−1] and µ1 = [1, 1]. This
results in the class clusters illustrated in Figure 1.

2. Bankruptcy. This dataset comprises of bankruptcy pre-
diction of Polish companies (Zikeba et al., 2016). The input
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Figure 1. The decision boundary for the model trained on the simu-
lated data. Each point corresponds to a point in our dataset. Purple
and yellow denote the data points with labels 0 and 1, respectively.

attributes consist of features like net profit, sales and inven-
tory from a pool of 10503 companies. We discard categori-
cal features to align with our theory. As is standard practice
when training neural networks, we normalize continuous
features to N (0, 1). Given the resulting 15 dimensional
feature set, the classification task is to predict whether the
company in interest will bankrupt or not.

3. Online Shopping. This dataset comprises 12330 in-
stances of online shopping interactions (Saka et al., 2019).
Each sample contains 10 numerical features like the num-
ber of pages shoppers visited, time they spend on a page,
metrics from Google Analytics and similar. Like with the
Bankruptcy dataset, we discard categorical variables and
normalize continuous variables, resulting in an 11 dimen-
sional feature space. The target variable for classification is
whether an online interaction ends in a purchase or not.

We choose the Bankruptcy and Online Shopping datasets
since they contain a large number of real-valued features as
assumed by our theory.

Underlying Function: For all our experiments, we use a
two layer neural network with ELU activation function and
10 nodes per hidden layer. We follow the standard 80/20
dataset split, i.e., 80% of the data was used for training the
model while 20% was used for testing. These are the under-
lying models (functions) that we are explaining in our exper-
iments. The models are trained using Adam optimizer using
a cross-entropy loss function. Our best performing models
achieve a testing accuracy of 99.50%, 96.30%, and 99.8%
using 15, 60, and 100 training epochs for the Simulated,
Bankruptcy, and Online Shopping datasets, respectively.
We also train models using fewer than the aforementioned
training epochs to assess the the impact of model accuracy
on our equivalence and robustness guarantees.

Parameters: Consistent with our theory, for any input point
x, for both C-LIME and SmoothGrad we generate pertur-
bations from a local neighborhood of x by sampling points
from N (x, σ2I). We study the effect of the number of per-
turbations and the value of σ2 in our experiments.

Figure 2. Equivalence plots showing that the L1 distance (Y axis)
between the explanations of SmoothGrad and C-LIME decreases
as we increase the number of perturbations (X axis). Each curve
corresponds to a different dataset.

6.2. Equivalence

To evaluate the equivalence between SmoothGrad and C-
LIME, we begin by generating explanations for each in-
stance in the datasets’ testing splits using σ2 = 1. We probe
the effect of varying σ2 in Section 6.4. We measure the
distance between SmoothGrad and C-LIME explanations
for each instance and then average these distances over the
entire testing split. We repeat this process for different num-
bers of perturbations, plotting these average distances versus
number of perturbations in Figure 2.

We observe that across all three datasets, the average L1
distance between the explanations for SmoothGrad and C-
LIME decreases as we increase their respective number of
perturbations, supporting equivalence. Interestingly, for all
the three datasets the equivalence between the two expla-
nation methods is achieved at as low as 100 perturbations.
This is significantly lower than the finite perturbation esti-
mates we derive in Proposition 1 and Theorem 3, suggesting
that in practice, explanations approach their expected value
even with a small number of perturbations.

6.3. Robustness

To evaluate the robustness of SmoothGrad and C-LIME,
we first take each instance x in the testing splits and gen-
erate 10 nearby neighbors x′ ∼ N (x, 0.01I). We compute
explanations for each original instance and its neighbors
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Figure 3. Robustness plots showing the maximum L1 distance (Y axis) between the explanations for the original and neighboring inputs
averaged over the test data points as a function of number of perturbations used for explanations (X axis). Each plot corresponds to a
different dataset. In each plot there are two curves: one for SmoothGrad and another one for C-LIME.

by perturbations using σ2 = 1. For each instance x, we
compute the distance between the explanation for x and the
explanations for each of its neighboring points x′. We take
the maximum of these distances and then take the average
of these maximum distances over the entire testing split. A
small value for this average maximum distance suggests that
explanations are robust as it implies that the difference be-
tween explanations for an instance and its nearby neighbors
is small. We compute this average maximum distance for
various numbers of perturbations and plot them in Figure 3.

The average maximum distance approaches zero across all
three datasets, evidencing the robustness of both Smooth-
Grad and C-LIME. Notice that SmoothGrad appears to be
more robust than C-LIME, with the average maximum dis-
tance saturating even closer to 0 than C-LIME. Furthermore,
SmoothGrad saturates faster than C-LIME at perturbation
numbers as small as 200. This suggests that SmoothGrad is
more robust than C-LIME for fixed finite perturbations.

6.4. Sensitivity Analysis

We evaluate the sensitivity of our findings to varying param-
eters σ2 and accuracy of the underlying function.

Sensitivity to σ2. We begin by evaluating the impact of
varying σ2 (variance on the perturbations) on our results.
We choose to focus on the Bankruptcy dataset, generating
the previously described equivalency and robustness plots
for σ2 = 0.01, 0.1, and 1, as illustrated in Figure 4. For
additional analysis for other dataset refer to the full ver-
sion. Notice that SmoothGrad and C-LIME converge to
equivalence faster for smaller σ2. Similarly, both Smooth-
Grad and C-LIME appear to achieve robustness faster for
smaller σ2. Both of these observations are intuitive as σ2

controls the size of the local neighborhood used to generate
perturbations. Our theory, on the other hand, predicts that
the number of perturbations should increase as either σ2 ap-
proaches 0 or becomes very large. We suspect that this is due

to our style of analysis which requires worst-case bounds on
quantities such as the inverse of sampled covariance matrix
which hypothetically can grow as σ2 approaches 0.

Sensitivity to Performance of Underlying Function. Fi-
nally, we analyze whether the performance of the underlying
model hinders the equivalence or robustness of SmoothGrad
and C-LIME. We modulate model performance by reduc-
ing the number of training epochs. We train a model with
86% accuracy using 16 epochs and contrast it to our orig-
inal model with 96% accuracy after 60 epochs. Again we
choose to focus on the Bankruptcy dataset, generating the
previously described equivalency and robustness plots for
both models, as illustrated in Figure 5. Interestingly, the con-
vergence rates slow down as the performance of the model
becomes worse. See the full version for more details.

7. Related Work
Interpretability research can be categorized into learning
inherently interpretable models, and constructing post hoc
explanations. We provide an overview below.

Inherently Interpretable Models. Many approaches have
been proposed to learn inherently interpretable models, for
various tasks including classification and clustering. To this
end, various classes of models such as decision trees, de-
cision lists (Letham et al., 2015), decision sets (Lakkaraju
et al., 2016), prototype based models (Bien & Tibshirani,
2009; Kim et al., 2014), and generalized additive mod-
els (Lou et al., 2012; Caruana et al., 2015) were proposed.
However, complex models such as deep neural networks
often achieve higher accuracy than simpler models (Ribeiro
et al., 2016); thus, there has been a lot of interest in con-
structing post hoc explanations to understand their behavior.

Post Hoc Explanations. Several techniques have been pro-
posed in recent literature to construct post hoc explana-



(a) Equivalence (b) Robustness of SmoothGrad (c) Robustness of C-LIME

Figure 4. Equivalence (4a) and robustness plots for SmoothGrad (4b) and C-LIME (4c) for various σ2 on the Bankruptcy dataset. In each
plot the Y axis corresponds to L1 distance and the X axis corresponds to the number of perturbations.

(a) Equivalence (b) Robustness of SmoothGrad (c) Robustness of C-LIME

Figure 5. Equivalence (5a) and robustness plots for SmoothGrad (5b) and C-LIME (5c) for functions with various accuracy on the
Bankruptcy dataset. In each plot the Y axis corresponds to L1 distance and the X axis corresponds to the number of perturbations.

tions of complex decision models. These techniques differ
in their access to the complex model (i.e., black box vs.
access to internals), scope of approximation (e.g., global
vs. local), search technique (e.g., perturbation-based vs.
gradient-based), and basic units of explanation (e.g., feature
importance vs. rule based). In addition to LIME (Ribeiro
et al., 2016) and SHAP (Lundberg & Lee, 2017), there are
several other model-agnostic, local explanation approaches
that explain individual predictions of black box models such
as Anchors, BayesLIME and BayesSHAP (Ribeiro et al.,
2018; Slack et al., 2020b; Koh & Liang, 2017). Several
of these approaches rely on input perturbations to learn
interpretable local approximations.

Other local explanation methods including SmoothGrad
have been proposed to compute saliency maps which capture
local feature importance for an individual prediction by
computing the gradient at that particular instance (Simonyan
et al., 2014; Sundararajan et al., 2017; Selvaraju et al., 2017;
Smilkov et al., 2017). There has also been recent work
on constructing counterfactual explanations which capture
what changes need to be made to a given instance in order
to flip its prediction (Wachter et al., 2017; Ustun et al.,
2019; Karimi et al., 2019; Poyiadzi et al., 2020; Looveren &
Klaise, 2019; Barocas et al., 2020; Karimi et al., 2020a;b).
Such explanations can be leveraged to provide recourse to

individuals negatively impacted by algorithmic decisions.
An alternate approach is to construct global explanations for
summarizing the complete behavior of any given black box
by approximating it using interpretable models (Lakkaraju
et al., 2019; Bastani et al., 2017; Kim et al., 2018).

Analyzing Post Hoc Explanations. Recent work has shed
light on the downsides of post hoc explanation techniques.
For instance, Rudin (2019) argued that post hoc explana-
tions are not reliable, as these explanations are not neces-
sarily faithful to the underlying models and present corre-
lations. There has also been recent work on empirically
exploring vulnerabilities of black box explanations (Ade-
bayo et al., 2018; Slack et al., 2020a; Lakkaraju & Bastani,
2020; Rudin, 2019; Dombrowski et al., 2019)—e.g., Ghor-
bani et al. (2019) demonstrated that post hoc explanations
may not be robust, changing drastically even with small
perturbations to inputs (Alvarez-Melis & Jaakkola, 2018).
In addition to the above works, there has also been some
recent research that focuses on theoretically analyzing the
robustness (Levine et al., 2019; Chalasani et al., 2020), and
other properties (Garreau & von Luxburg, 2020) of some
of the popular post hoc explanation techniques. However,
these works do not attempt to explore deeper connections
between different classes of these techniques.



8. Future Work
We initiate a study on the unification of perturbation and
gradient based post hoc explanations, and pave the way for
several promising research directions. It would be interest-
ing to establish connections between other perturbation and
gradient based explanations such as SHAP or Integrated
gradients. It would also be interesting to study how pertur-
bation and gradient based methods relate to counterfactual
explanations. Furthermore, we mainly focused on the anal-
ysis of feature attribution methods. It would be exciting
to analyze other kinds of explanation methods such as rule
based or prototype based methods.
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