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ABSTRACT
Restless multi-arm bandits (RMABs), a class of resource allocation
problems with broad application in areas such as healthcare, online
advertising, and anti-poaching, have recently been studied from
a multi-agent reinforcement learning perspective. Prior RMAB re-
search suffers from several limitations, e.g., it fails to adequately
address continuous states, and requires retraining from scratch
when arms opt-in and opt-out over time, a common challenge in
many real world applications. We propose a neural network-based
pre-trained model that has general zero-shot ability on a wide range
of previously unseen RMABs.
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1 INTRODUCTION
Restless multi-arm bandits (RMABs), a class of resource alloca-
tion problems involving multiple agents with a global resource
constraint, have recently been studied from a multi-agent reinforce-
ment learning perspective. This has found applications in various
scenarios, including resource allocation in multi-channel commu-
nication, machine maintenance, and healthcare [1, 8, 11, 14, 17, 21,
22, 24, 28, 29, 33].

The usual RMAB setting considers a fixed number of arms, each
associated with a known, fixed MDP with finite state and action
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spaces; the RMAB chooses 𝐾 of 𝑁 arms every round to optimize
some long term objective. Even in this setting, the problem has been
shown to be PSPACE hard [20]. Several approximation algorithms
have been proposed in this setting [7, 27], particularly when MDP
transition probabilities are fully specified, which are successful in
practice. State-of-the-art approaches for binary action RMABs com-
monly provide policies based on theWhittle index [27], an approach
that has also been generalized to multi-action RMABs[7, 9]. There
are also linear programming-based approaches to both binary and
multi-action RMABs [6, 30–32]. Reinforcement learning (RL) based
techniques have also been proposed as state-of-the-art solutions
for general multi-action RMABs [10].

In this work, we focus on RL-based methods that provide general
solutions to binary and multi-action RMABs, without requiring
ground truth transition dynamics, or special properties such as
indexability as required by other approaches [16, 26]. Unfortunately,
several limitations exist in current RMAB solutions, especially for
state of the art RL-based solutions, making them challenging or
inefficient to deploy in real-world resource allocation problems.

The first limitation arises when dealing with arms that con-
stantly opt-in (also known as streaming RMABs [16]). Existing
solutions either require ground truth transition probabilities, which
are often unknown in practice, or else require an entirely new
model to be trained repeatedly, which can be extremely computa-
tionally costly and sample inefficient. For instance, public health
programs may model patient intervention deployment as an RMAB
problem[3, 4, 13, 18, 19, 25], where new patients (arms in RMABs)
arrive asynchronously during intervention deployment[16]. Fre-
quently training models from scratch to account for new patients
with unknown transition dynamics may be infeasible, or prohib-
itively expensive over long time periods, particularly for public
health programs that operate with limited resources.

A second limitation occurs for new programs, or existing pro-
grams experiencing a slight change in the user base. In these sit-
uations, existing approaches do not provide a pretrained RMAB
model that can be immediately deployed. In deep learning, pre-
trained models are the foundation for contemporary, large-scale
image and text networks that generalize well across a variety of
tasks [2]. For real-world problems modeled with RMABs, establish-
ing a similar pretrained model is essential to reduce the burden of
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training new RMAB policies from scratch, as well as for transferring
knowledge across domains when data is scarce.

The third limitation occurs in handling continuous state multi-
action RMABs. Continuous state restless bandits have several im-
portant applications [5, 12, 23]. However, in field studies, naturally
continuous domain state-spaces, such as patient adherence, are
often binned into manually crafted discrete state spaces to improve
model tractability and scalability [15]. In this process, we may lose
crucial information about raw observations, and spend substantial
time crafting these discrete state spaces manually.

We propose a pretrained model that enables zero-shot deploy-
ment on unseen arms as well as rapid fine-tuning for specific RMAB
instances.

2 BACKGROUND
We consider multi-action RMABs with system capacity 𝑁 , where
existing arms have the option to opt-out (that is, the state-action-
rewards corresponding to them are disregarded by the model post
opt-out), and new, unseen arms can request to opt-in (that is, these
arms are considered only post the opt-in time). Such requests will
be accepted if and only if the system capacity permits. A vector
b𝑡 ∈ {0, 1}𝑁 represents the opt-in decisions:

b𝑖,𝑡 =

{
1 if arm 𝑖 opts-in at round 𝑡 ,
0 otherwise.

Notice that existing arms must opt-in in each round 𝑡 to remain
in the system. For each arm 𝑖 ∈ [𝑁 ], the state space S𝑖 can be
either discrete or continuous, and the action space A𝑖 is a finite
set of discrete actions. Each action 𝑎 ∈ A𝑖 has an associated cost
C𝑖 (𝑎), with C𝑖 (0) denoting a no-cost passive action. The reward
at a state is given by a function 𝑅𝑖 : S𝑖 → R. We let 𝛽 ∈ [0, 1)
denote a discount factor. Each arm has a unique feature vector
𝒛𝑖 ∈ R𝑚 that provides useful information about the arm. Notice our
model directly utilizes feature information in its policy network,
without requiring intermediate steps to extract transition dynamics
information from features.

When the state space is discrete, each arm 𝑖 ∈ [𝑁 ] follows a
Markov Decision Process (S𝑖 ,A𝑖 , C𝑖 ,𝑇𝑖 , 𝑅𝑖 , 𝛽, 𝒛𝑖 ), where 𝑇𝑖 : S𝑖 ×
A𝑖 ×S𝑖 → [0, 1] is a transition matrix representing the probability
of transitioning from the current state to the next state given an
action. In contrast, when the state space is continuous, each arm
𝑖 ∈ [𝑁 ] follows a Markov Decision Process (S𝑖 ,A𝑖 , C𝑖 , 𝚪𝑖 , 𝑅𝑖 , 𝛽, 𝒛𝑖 ),
where 𝚪𝑖 is a set of parameters encoding the transition dynamics.
For example, in the case that the next state moves according to a
Gaussian distribution, 𝚪𝑖 may denote the mean and variance of the
Gaussian.

For simplicity, we assume that S𝑖 ,A𝑖 , C𝑖 , and 𝑅𝑖 are the same for
all arms 𝑖 ∈ [𝑁 ] and omit the subscript 𝑖 . Note that our algorithms
can also be used in the general case where rewards and action
costs are different across arms. For ease of notation, we let 𝒔 ∈ R𝑁
denote the state over all arms, and we let 𝑨 ∈ {0, 1}𝑁×|A| denote
one-hot-encoding of the actions taken over all arms. The agent
learns a policy 𝜋 that maps states 𝒔 and features 𝒛 to actions 𝑨,
while satisfying a constraint that the sum cost of actions taken is
no greater than a given budget 𝐵 in every timestep 𝑡 ∈ [𝐻 ], where
𝐻 is the length of the horizon.

Our goal is to learn an RMAB policy that maximizes the
following Bellman equation. The key difficulty in learning such
a policy is how to utilize features 𝒛 and address opt-in decisions 𝝃 .
These are important research questions not addressed in previous
works [10, 16].

𝐽 (𝒔, 𝒛, 𝝃 ) = max
𝑨

{
𝑁∑︁
𝑖=1

𝑅 (𝒔𝑖 ) + 𝛽 E
[
𝐽
(
𝒔′, 𝒛, 𝝃

)
| 𝒔,𝑨

]}
, (1)

s.t.
𝑁∑︁
𝑖=1

|A |∑︁
𝑗=1

𝑨𝑖 𝑗𝑐 𝑗 ≤ 𝐵 and
|A |∑︁
𝑗=1

𝑨𝑖 𝑗 = 1 ∀𝑖 ∈ [𝑁 ] ,

where 𝑐 𝑗 ∈ C is the cost of 𝑗 th action, and 𝐴𝑖 𝑗 = 1 if action 𝑗

is chosen on arm 𝑖 and 𝐴𝑖 𝑗 = 0 otherwise. To learn a policy in
multi-action RMAB problems, a scalable approach is to use the
Lagrangian relaxation [7, 9, 10]:

𝐽
(
𝑠, 𝒛, 𝝃 , _★

)
= min

_≥0

(
_𝐵

1 − 𝛽 +
𝑁∑︁
𝑖=1

max
𝑗∈ |A |

{
𝑄𝑖

(
𝒔𝑖 , 𝑎𝑖 𝑗 , 𝒛𝑖 , 𝝃𝑖 , _

)})
,

(2)

s.t. 𝑄𝑖

(
𝒔𝑖 , 𝑎𝑖 𝑗 , 𝒛𝑖 , 𝝃𝑖 , _

)
= b𝑖𝑅 (𝒔𝑖 ) − b𝑖_𝑐 𝑗 + 𝛽 E

[
𝑄𝑖

(
𝒔′𝑖 , 𝑎𝑖 𝑗 , 𝒛𝑖 , 𝝃𝑖 , _

)
| 𝜋 (_)

]
.

where𝑄 is the Q-function, 𝑎𝑖 𝑗 is the 𝑗 th action of arm 𝑖 , 𝑠′𝑖 is the state
transitioned to from 𝑠𝑖 under action 𝑎𝑖 𝑗 , and 𝜋 (_) is the optimal
policy under a given _. Notice that this relaxation decouples the Q-
functions of the arms, and therefore𝑄𝑖 can be solved independently
for a given _. Computing an appropriate _ is critical in learning a
good policy [9, 10].

3 CONTRIBUTION
We propose a pretrained model that has general zero-shot ability on
entire sets of unseen arms. The proposed model would allow fine-
tuning on specific instances in a more sample-efficient way than
training from scratch, and it would accommodate both discrete state
setting and challenging continuous state setting with nonlinear
reward functions. Additionally, the proposed model would allow
agents to learn from each other’s experience.
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