2018
Eric Rice, Amanda Yoshioka-Maxwell, Robin Petering, Laura Onasch-Vera, Jaih Craddock, Milind Tambe, Amulya Yadav, Bryan Wilder, Darlene Woo, Hailey Winetrobe, and Nicole Wilson. 2018. “
Piloting the Use of Artificial Intelligence to Enhance HIV Prevention Interventions for Youth Experiencing Homelessness.” Journal of the Society for Social Work and Research, Volume 9, Number 4., 9, 4.
AbstractYouth experiencing homelessness are at risk for HIV and need interventions to prevent risky sex behaviors. We tested the feasibility of using artificial intelligence (AI) to select peer change agents (PCAs) to deliver HIV prevention messages among youth experiencing homelessness. Method: We used a pretest– posttest quasi-experimental design. In the AI condition (n 5 62), 11 PCAs were selected via AI algorithm; in the popularity comparison (n 5 55), 11 PCAs were selected 6 months later based on maximum degree centrality (most ties to others in the network). All PCAs were trained to promote HIV testing and condom use among their peers. Participants were clients at a drop-in center in Los Angeles, CA. HIV testing and condom use were assessed via a self-administered, computer-based survey at baseline (n 5 117), 1 month (n 5 86, 74%), and 3 months (n 5 70, 60%). Results: At 3 months, rates of HIV testing increased among participants in the AI condition relative to the comparison group (18.8% vs. 8.1%), as did condom use during anal sex (12.1% vs. 3.3%) and vaginal sex (29.2% vs. 23.7%). Conclusions: AI-enhanced PCA intervention is a feasible method for engaging youth experiencing homelessness in HIV prevention
piloting_the_use_of_artificial_intelligenceto_enhance_hiv_prevention_interventionsfor_youth_experiencing_homelessness.pdf Amulya Yadav, Ritesh Noothigattu, Eric Rice, Laura Onasch-Vera, Leandro Marcolino, and Milind Tambe. 2018. “
Please be an influencer? Contingency Aware Influence Maximization.” In International Conference on Autonomous Agents and Multiagent Systems (AAMAS-18).
AbstractMost previous work on influence maximization in social networks assumes that the chosen influencers (or seed nodes) can be influenced with certainty (i.e., with no contingencies). In this paper, we focus on using influence maximization in public health domains for assisting low-resource communities, where contingencies are common. It is very difficult in these domains to ensure that the seed nodes are influenced, as influencing them entails contacting/convincing them to attend training sessions, which may not always be possible. Unfortunately, previous state-of-the-art algorithms for influence maximization are unusable in this setting. This paper tackles this challenge via the following four contributions: (i) we propose the Contingency Aware Influence Maximization problem and analyze it theoretically; (ii) we cast this problem as a Partially Observable Markov Decision Process and propose CAIMS (a novel POMDP planner) to solve it, which leverages a natural action space factorization associated with real-world social networks; and (iii) we provide extensive simulation results to compare CAIMS with existing state-of-the-art influence maximization algorithms. Finally, (iv) we provide results from a real-world feasibility trial conducted to evaluate CAIMS, in which key influencers in homeless youth social networks were influenced in order to spread awareness about HIV.
2018_21_teamcore_influencer_contingency_aware.pdf Elizabeth Bondi, Fei Fang, Mark Hamilton, Debarun Kar, Donnabell Dmello, Jongmoo Choi, Robert Hannaford, Arvind Iyer, Lucas Jopp, Milind Tambe, and Ram Nevatia. 2018. “
SPOT Poachers in Action: Augmenting Conservation Drones with Automatic Detection in Near Real Time.” Proceedings of the Thirtieth Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-18).
AbstractThe unrelenting threat of poaching has led to increased development of new technologies to combat it. One such example is the use of long wave thermal infrared cameras mounted on unmanned aerial vehicles (UAVs or drones) to spot poachers at night and report them to park rangers before they are able to harm animals. However, monitoring the live video stream from these conservation UAVs all night is an arduous task. Therefore, we build SPOT (Systematic POacher deTector), a novel application that augments conservation drones with the ability to automatically detect poachers and animals in near real time. SPOT illustrates the feasibility of building upon state-of-the-art AI techniques, such as Faster RCNN, to address the challenges of automatically detecting animals and poachers in infrared images. This paper reports (i) the design and architecture of SPOT, (ii) a series of efforts towards more robust and faster processing to make SPOT usable in the field and provide detections in near real time, and (iii) evaluation of SPOT based on both historical videos and a real-world test run by the end users in the field. The promising results from the test in the field have led to a plan for larger-scale deployment in a national park in Botswana. While SPOT is developed for conservation drones, its design and novel techniques have wider application for automated detection from UAV videos.
2018_35_teamcore_spot_camera_ready.pdf Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe. 2018. “
Stackelberg Security Games: Looking Beyond a Decade of Success.” In International Joint Conference on Artificial Intelligence (IJCAI).
AbstractThe Stackelberg Security Game (SSG) model has been immensely influential in security research since it was introduced roughly a decade ago. Furthermore, deployed SSG-based applications are one of most successful examples of game theory applications in the real world. We present a broad survey of recent technical advances in SSG and related literature, and then look to the future by highlighting the new potential applications and open research problems in SSG.
2018_11_teamcore_camera-ready.pdf 2017
Debarun Kar, Subhasree Sengupta, Ece Kamar, Eric Horvitz, and Milind Tambe. 2017. “
Believe It or Not: Modeling Adversary Belief Formation in Stackelberg Security Games with Varying Information .” In Advances in Cognitive Systems.
AbstractThere has been significant amount of research in Stackelberg Security Games (SSG), and a common
assumption in that literature is that the adversary perfectly observes the defender’s mixed strategy.
However, in real-world settings the adversary can only observe a sequence of defender pure strategies sampled from the actual mixed strategy. Therefore, a key challenge is the modeling of adversary’s belief formation based on such limited observations. The SSG literature lacks a comparative
analysis of these models and a principled study of their strengths and weaknesses. In this paper, we
study the following shortcomings of previous work and introduce new models that address these
shortcomings. First, we address the lack of empirical evaluation or head-to-head comparison of
existing models by conducting the first-of-its-kind systematic comparison of existing and new proposed models on belief data collected from human subjects on Amazon Mechanical Turk. Second,
we show that assuming a homogeneous population of adversaries, a common assumption in the
literature, is unrealistic based on our experiments, which highlight four heterogeneous groups of
adversaries with distinct belief update mechanisms. We present new models that address this shortcoming by clustering and learning these disparate behaviors from data when available. Third, we
quantify the value of having historical data on the accuracy of belief prediction.
2017_12_teamcore_acs2017_beliefmodeling1.pdf A Schlenker, H Xu, M Guirguis, C Kiekintveld, A Sinha, M Tambe, S Sonya, D Balderas, and N Dunstatter. 2017. “
Don’t Bury your Head inWarnings: A Game-Theoretic Approach for Intelligent Allocation of Cyber-security Alerts .” In International Joint Conference on Artificial Intelligence (IJCAI).
AbstractIn recent years, there have been a number of successful cyber attacks on enterprise networks by malicious actors. These attacks generate alerts which
must be investigated by cyber analysts to determine
if they are an attack. Unfortunately, there are magnitude more alerts than cyber analysts - a trend expected to continue into the future creating a need
to find optimal assignments of the incoming alerts
to analysts in the presence of a strategic adversary.
We address this challenge with the four following
contributions: (1) a cyber allocation game (CAG)
model for the cyber network protection domain, (2)
an NP-hardness proof for computing the optimal
strategy for the defender, (3) techniques to find the
optimal allocation of experts to alerts in CAG in the
general case and key special cases, and (4) heuristics to achieve significant scale-up in CAGs with
minimal loss in solution quality.
2017_13_teamcore_ijcai17_cameraready.pdf Leandro Soriano Marcolino, Aravind S. Lakshminarayanan, Vaishnavh Nagarajan, and Milind Tambe. 2017. “
Every Team Deserves a Second Chance An extended study on predicting team performance .” Journal of Agents and Multiagent Systems (JAAMAS) (To appear).
AbstractVoting among different agents is a powerful tool in problem solving, and it has
been widely applied to improve the performance in finding the correct answer to complex
problems. We present a novel benefit of voting, that has not been observed before: we can
use the voting patterns to assess the performance of a team and predict their final outcome.
This prediction can be executed at any moment during problem-solving and it is completely
domain independent. Hence, it can be used to identify when a team is failing, allowing an
operator to take remedial procedures (such as changing team members, the voting rule, or
increasing the allocation of resources). We present three main theoretical results: (i) we
show a theoretical explanation of why our prediction method works; (ii) contrary to what
would be expected based on a simpler explanation using classical voting models, we show
that we can make accurate predictions irrespective of the strength (i.e., performance) of the
teams, and that in fact, the prediction can work better for diverse teams composed of different agents than uniform teams made of copies of the best agent; (iii) we show that the quality
of our prediction increases with the size of the action space. We perform extensive experimentation in two different domains: Computer Go and Ensemble Learning. In Computer
Go, we obtain high quality predictions about the final outcome of games. We analyze the
prediction accuracy for three different teams with different levels of diversity and strength,
and show that the prediction works significantly better for a diverse team. Additionally, we
show that our method still works well when trained with games against one adversary, but
tested with games against another, showing the generality of the learned functions. Moreover, we evaluate four different board sizes, and experimentally confirm better predictions
in larger board sizes. We analyze in detail the learned prediction functions, and how they change according to each team and action space size. In order to show that our method is
domain independent, we also present results in Ensemble Learning, where we make online
predictions about the performance of a team of classifiers, while they are voting to classify
sets of items. We study a set of classical classification algorithms from machine learning, in
a data-set of hand-written digits, and we are able to make high-quality predictions about the
final performance of two different teams. Since our approach is domain independent, it can
be easily applied to a variety of other domains.
2017_3_teamcore_jaamas15.pdf Hau Chan, Eric Rice, Phebe Vayanos, Milind Tambe, and Matthew Morton. 2017. “
Evidence From the Past: AI Decision Aids to Improve Housing Systems for Homeless Youth .” Proc. of AAAI Fall Symposium Series on Cognitive Assistance in Government and Public Sector Applications, 2017.
AbstractCould an AI decision aid improve housing systems that assist homeless youth? There are nearly 2 million homeless
youth in the United States each year. Coordinated entry systems are being used to provide homeless youth with housing
assistance across the nation. Despite these efforts, the number of homeless youth still living on the street remains very
high. Motivated by this fact, we initiate a first study to create
AI decision aids for improving the current housing systems
for homeless youth. First, we determine whether the current
rubric for prioritizing youth for housing assistance can be
used to predict youth’s homelessness status after receiving
housing assistance. We then consider building better AI decision aids and predictive models using other components of
the rubric. We believe there is much potential for effective
human-machine collaboration in the context of housing allocation. We plan to work with HUD and local communities to
develop such systems in the future.
2017_19_teamcore_current_housing.pdf Nicole Sintov, Debarun Kar, Thanh Nguyen, Fei Fang, Kevin Hoffman, Arnaud Lyet, and Milind Tambe. 2017. “
Keeping it Real: Using Real-World Problems to Teach AI to Diverse Audiences.” AI Magazine (To appear).
AbstractIn recent years, AI-based applications have increasingly been used in real-world domains. For example, game theorybased decision aids have been successfully deployed in various security settings to protect ports, airports, and wildlife.
This paper describes our unique problem-to-project educational approach that used games rooted in real-world issues
to teach AI concepts to diverse audiences. Specifically, our educational program began by presenting real-world
security issues, and progressively introduced complex AI concepts using lectures, interactive exercises, and ultimately
hands-on games to promote learning. We describe our experience in applying this approach to several audiences,
including students of an urban public high school, university undergraduates, and security domain experts who protect
wildlife. We evaluated our approach based on results from the games and participant surveys.
2017_2_teamcore_sintovetal_aaaimagazine_31aug.pdf Haifeng Xu, Benjamin Ford, Fei Fang, Bistra Dilkina, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, and Joshua Mabonga. 2017. “
Optimal Patrol Planning for Green Security Games with Black-Box Attackers .” In Conference on Decision and Game Theory for Security (GameSec) 2017.
AbstractMotivated by the problem of protecting endangered animals,
there has been a surge of interests in optimizing patrol planning for conservation area protection. Previous efforts in these domains have mostly
focused on optimizing patrol routes against a specific boundedly rational
poacher behavior model that describes poachers’ choices of areas to attack. However, these planning algorithms do not apply to other poaching
prediction models, particularly, those complex machine learning models
which are recently shown to provide better prediction than traditional
bounded-rationality-based models. Moreover, previous patrol planning
algorithms do not handle the important concern whereby poachers infer the patrol routes by partially monitoring the rangers’ movements. In
this paper, we propose OPERA, a general patrol planning framework
that: (1) generates optimal implementable patrolling routes against a
black-box attacker which can represent a wide range of poaching prediction models; (2) incorporates entropy maximization to ensure that the
generated routes are more unpredictable and robust to poachers’ partial monitoring. Our experiments on a real-world dataset from Uganda’s
Queen Elizabeth Protected Area (QEPA) show that OPERA results in
better defender utility, more efficient coverage of the area and more unpredictability than benchmark algorithms and the past routes used by
rangers at QEPA.
2017_20_teamcore_blackbox.pdf F. Fang, T. H. Nguyen, A. Sinha, S. Gholami, A. Plumptre, L. Joppa, M. Tambe, M. Driciru, F. Wanyama, A. Rwetsiba, R. Critchlow, and C. M. Beale. 2017. “
Predicting Poaching for Wildlife Protection.” IBM Journal of Research and Development (To appear).
AbstractWildlife species such as tigers and elephants are under the threat of poaching. To combat
poaching, conservation agencies (“defenders”) need to (1) anticipate where the poachers are
likely to poach and (2) plan effective patrols. We propose an anti-poaching tool CAPTURE
(Comprehensive Anti-Poaching tool with Temporal and observation Uncertainty REasoning),
which helps the defenders achieve both goals. CAPTURE builds a novel hierarchical model for
poacher-patroller interaction. It considers the patroller’s imperfect detection of signs of
poaching, the complex temporal dependencies in the poacher's behaviors and the defender’s lack
of knowledge of the number of poachers. Further, CAPTURE uses a new game-theoretic
algorithm to compute the optimal patrolling strategies and plan effective patrols. This paper
investigates the computational challenges that CAPTURE faces. First, we present a detailed
analysis of parameter separation and target abstraction, two novel approaches used by
CAPTURE to efficiently learn the parameters in the hierarchical model. Second, we propose two
heuristics – piece-wise linear approximation and greedy planning – to speed up the computation
of the optimal patrolling strategies. We discuss in this paper the lessons learned from using
CAPTURE to analyze real-world poaching data collected over 12 years in Queen Elizabeth
National Park in Uganda.
2017_7_teamcore_ibmjournal_accepted.pdf Bryan Wilder, Amulya Yadav, Nicole Immorlica, Eric Rice, and Milind Tambe. 2017. “
Robust, dynamic influence maximization.” In AAMAS International Workshop on Optimization in Multi-Agent Systems (OPTMAS).
AbstractThis paper focuses on new challenges in influence maximization inspired by non-profits’ use of social networks to effect behavioral
change in their target populations. Influence maximization is a multiagent problem where the challenge is to select the most influential agents
from a population connected by a social network. Specifically, our work is
motivated by the problem of spreading messages about HIV prevention
among homeless youth using their social network. We show how to compute solutions which are provably close to optimal when the parameters
of the influence process are unknown. We then extend our algorithm to
a dynamic setting where information about the network is revealed at
each stage. Simulation experiments using real world networks collected
by the homeless shelter show the advantages of our approach.
2017_14_teamcore_wilder_optmas_2017.pdf Sara Marie Mc Carthy, Phebe Vayanos, and Milind Tambe. 2017. “
Staying Ahead of the Game: Adaptive Robust Optimization for Dynamic Allocation of Threat Screening Resources .” In International Joint Conference on Artificial Intelligence (IJCAI).
AbstractWe consider the problem of dynamically allocating screening resources of different efficacies (e.g.,
magnetic or X-ray imaging) at checkpoints (e.g., at
airports or ports) to successfully avert an attack by
one of the screenees. Previously, the Threat Screening Game model was introduced to address this
problem under the assumption that screenee arrival
times are perfectly known. In reality, arrival times
are uncertain, which severely impedes the implementability and performance of this approach. We
thus propose a novel framework for dynamic allocation of threat screening resources that explicitly accounts for uncertainty in the screenee arrival
times. We model the problem as a multistage robust
optimization problem and propose a tractable solution approach using compact linear decision rules
combined with robust reformulation and constraint
randomization. We perform extensive numerical
experiments which showcase that our approach outperforms (a) exact solution methods in terms of
tractability, while incurring only a very minor loss
in optimality, and (b) methods that ignore uncertainty in terms of both feasibility and optimality.
2017_11_teamcore_adjustable_robust_optimization.pdf A Schlenker, H Xu, C Kiekintveld, A Sinha, M Tambe, M Guirguis, S Sonya, D Balderas, and N Dunstatter. 2017. “
Towards a Game-theoretic Framework for Intelligent Cyber-security Alert Allocation .” In .
AbstractIn recent years, there have been a number of successful cyber attacks
on enterprise networks by malicious actors. These attacks generate alerts which
must be investigated by cyber analysts to determine if they are an attack. Unfortunately, there are magnitude more alerts than cyber analysts - a trend expected
to continue into the future creating a need to find optimal assignments of the
incoming alerts to analysts in the presence of a strategic adversary. We address
this challenge with the four following contributions: (1) a cyber allocation game
(CAG) model for the cyber network protection domain, (2) an NP-hardness proof
for computing the optimal strategy for the defender, (3) techniques to find the
optimal allocation of experts to alerts in CAG in the general case and key special
cases, and (4) heuristics to achieve significant scale-up in CAGs with minimal
loss in solution quality.
2017_15_teamcore_alert_allocation_agt.pdf A. Yadav, H. Chan, A.X. Jiang, H. Xu, E. Rice, R. Petering, and M. Tambe. 2017. “
Using Social Networks to Raise HIV Awareness Among Homeless Youth .” IBM Journal of Research and Development (To appear).
AbstractMany homeless shelters conduct interventions to raise awareness about HIV (human
immunodeficiency virus) among homeless youth. Due to human and financial resource
shortages, these shelters need to choose intervention attendees strategically, in order to maximize
awareness through the homeless youth social network. In this work, we propose HEALER
(hierarchical ensembling based agent which plans for effective reduction in HIV spread), an
agent that recommends sequential intervention plans for use by homeless shelters. HEALER's
sequential plans (built using knowledge of homeless youth social networks) select intervention
participants strategically to maximize influence spread, by solving POMDPs (partially
observable Markov decision process) on social networks using heuristic ensemble methods. This
paper explores the motivations behind HEALER’s design, and analyzes HEALER’s performance
in simulations on real-world networks. First, we provide a theoretical analysis of the DIME
(dynamic influence maximization under uncertainty) problem, the main computational problem
that HEALER solves. HEALER relies on heuristic methods for solving the DIME problem due
to its computational hardness. Second, we explain why heuristics used inside HEALER work
well on real-world networks. Third, we present results comparing HEALER to baseline
algorithms augmented by HEALER’s heuristics. HEALER is currently being tested in real-world
pilot studies with homeless youth in Los Angeles.
2017_8_teamcore_ibmdatasciencedraft.pdf Debarun Kar, Benjamin Ford, Shahrzad Gholami, Fei Fang, Andrew Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, and Aggrey Rwetsiba. 2017. “
Cloudy with a Chance of Poaching: Adversary Behavior Modeling and Forecasting with Real-World Poaching Data.” In International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
AbstractWildlife conservation organizations task rangers to deter and capture wildlife poachers. Since rangers are responsible for patrolling vast areas, adversary behavior modeling can help more effectively direct future patrols. In this innovative application track paper, we present an adversary behavior modeling system, INTERCEPT (INTERpretable Classification Ensemble to Protect Threatened species), and provide the most extensive evaluation in the AI literature of one of the largest poaching datasets from Queen Elizabeth National Park (QENP) in Uganda, comparing INTERCEPT with its competitors; we also present results from a month-long test of INTERCEPT in the field. We present three major contributions. First, we present a paradigm shift in modeling and forecasting wildlife poacher behavior. Some of the latest work in the AI literature (and in Conservation) has relied on models similar to the Quantal Response model from Behavioral Game Theory for poacher behavior prediction. In contrast, INTERCEPT presents a behavior model based on an ensemble of decision trees (i) that more effectively predicts poacher attacks and (ii) that is more effectively interpretable and verifiable. We augment this model to account for spatial correlations and construct an ensemble of the best models, significantly improving performance. Second, we conduct an extensive evaluation on the QENP dataset, comparing 41 models in prediction performance over two years. Third, we present the results of deploying INTERCEPT for a one-month field test in QENP - a first for adversary behavior modeling applications in this domain. This field test has led to finding a poached elephant and more than a dozen snares (including a roll of elephant snares) before they were deployed, potentially saving the lives of multiple animals - including endangered elephants.
2017_5_teamcore_aamas2017_intercept.pdf Amulya Yadav, Aida Rahmattalabi, Ece Kamar, Phebe Vayanos, Milind Tambe, and Venil Loyd Noronha. 2017. “
Explanations Systems for Influential Maximizations Algorithms.” In 3rd International Workshop on Social Influence Analysis.
AbstractThe field of influence maximization (IM) has made rapid advances, resulting in many sophisticated algorithms for identifying “influential” members in social networks. However, in order to engender trust in IM algorithms, the rationale behind their choice of “influential” nodes needs to be explained to its users. This is a challenging open problem that needs to be solved before these algorithms can be deployed on a large scale. This paper attempts to tackle this open problem via four major contributions: (i) we propose a general paradigm for designing explanation systems for IM algorithms by exploiting the tradeoff between explanation accuracy and interpretability; our paradigm treats IM algorithms as black boxes, and is flexible enough to be used with any algorithm; (ii) we utilize this paradigm to build XplainIM, a suite of explanation systems; (iii) we illustrate the usability of XplainIM by explaining solutions of HEALER (a recent IM algorithm) among ∼200 human subjects on Amazon Mechanical Turk (AMT); and (iv) we provide extensive evaluation of our AMT results, which shows the effectiveness of XplainIM.
2017_23_teamcore_socinf_camera.pdf Nitin Kamra, Fei Fang, Debarun Kar, Yan Liu, and Milind Tambe. 2017. “
Handling Continuous Space Security Games with Neural Networks.” In In IWAISe-17: 1st International Workshop on A.I. in Security held at the International Joint Conference on Artificial Intelligence.
AbstractDespite significant research in Security Games, limited efforts have been made to handle game domains with continuous space. Addressing such limitations, in this paper we propose: (i) a continuous space security game model that considers infinitesize action spaces for players; (ii) OptGradFP, a novel and general algorithm that searches for the optimal defender strategy in a parametrized search space; (iii) OptGradFP-NN, a convolutional neural network based implementation of OptGradFP for continuous space security games; (iv) experiments and analysis with OptGradFP-NN. This is the first time that neural networks have been used for security games, and it shows the promise of applying deep learning to complex security games which previous approaches fail to handle.
2017_22_teamcore_ijcai_iwaise_sub2_final.pdf Amulya Yadav, Bryan Wilder, Eric Rice, Robin Petering, Jaih Craddock, Amanda Yoshioka-Maxwell, Mary Hemler, Laura Onasch-Vera, Milind Tambe, and Darlene Woo. 2017. “
Influence Maximization in the Field: The Arduous Journey from Emerging to Deployed Application.” In International Conference on Autonomous Agents and Multi-agent Systems (AAMAS).
AbstractThis paper focuses on a topic that is insufficiently addressed in the literature, i.e., challenges faced in transitioning agents from an emerging phase in the lab, to a deployed application in the field. Specifically, we focus on challenges faced in transitioning HEALER and DOSIM, two agents for social influence maximization, which assist service providers in maximizing HIV awareness in real-world homeless-youth social networks. These agents recommend key "seed" nodes in social networks, i.e., homeless youth who would maximize HIV awareness in their real-world social network. While prior research on these agents published promising simulation results from the lab, this paper illustrates that transitioning these agents from the lab into the real-world is not straightforward, and outlines three major lessons. First, it is important to conduct real-world pilot tests; indeed, due to the health-critical nature of the domain and complex influence spread models used by these agents, it is important to conduct field tests to ensure the real-world usability and effectiveness of these agents. We present results from three real-world pilot studies, involving 173 homeless youth in an American city. These are the first such pilot studies which provide headto-head comparison of different agents for social influence maximization, including a comparison with a baseline approach. Second, we present analyses of these real-world results, illustrating the strengths and weaknesses of different influence maximization approaches we compare. Third, we present research and deployment challenges revealed in conducting these pilot tests, and propose solutions to address them. These challenges and proposed solutions are instructive in assisting the transition of agents focused on social influence maximization from the emerging to the deployed application phase.
2017_4_teamcore_yadav_aamas2017.pdf Amulya Yadav, Hau Chan, Albert Xin Jiang, Haifeng Xu, Eric Rice, and Milind Tambe. 2017. “
Maximizing Awareness about HIV in Social Networks of Homeless Youth with Limited Information.” In International Joint Conference on Artificial Intelligence (IJCAI).
AbstractThis paper presents HEALER, a software agent that recommends sequential intervention plans for use by homeless shelters, who organize these interventions to raise awareness about HIV among homeless youth. HEALER’s sequential plans (built using knowledge of social networks of homeless youth) choose intervention participants strategically to maximize influence spread, while reasoning about uncertainties in the network. While previous work presents influence maximizing techniques to choose intervention participants, they do not address two real-world issues: (i) they completely fail to scale up to real-world sizes; and (ii) they do not handle deviations in execution of intervention plans. HEALER handles these issues via two major contributions: (i) HEALER casts this influence maximization problem as a POMDP and solves it using a novel planner which scales up to previously unsolvable real-world sizes; and (ii) HEALER allows shelter officials to modify its recommendations, and updates its future plans in a deviationtolerant manner. HEALER was deployed in the real world in Spring 2016 with considerable success.
2017_10_teamcore_ijcai17.pdf