W. Harvey, D. Kalp, M. Tambe, D. McKeown, and A. Newell. 1990. “ The effectiveness of task-level parallelism for high-level vision.” In ACM/SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPOPP).Abstract
Large production systems (rule-based systems) continue to suffer from extremely slow execution which limits their utility in practical applications as well as in research settings. Most investigations in speeding up these systems have focused on match (or knowledge-search) parallelism. Although gocd speed-ups have been achieved in this pnxzss, these investigations have revealed the limitations on the total speed-up available from this source. This limited speed-up is insufficient to alleviate the problem of slow execution in large-scale production system implementations. Such large-scale systems are expected to increase as researchers develop increasingly more competent production systems. In this paper, we focus on task-level parallelism, which is obtained by a high-level decomposition of the production system. Speed-ups obtained from task-level parallelism will multiply with the speed-ups obtained from match parallelism. The vehicle for our investigation of task-level parallelism is SPAM. a high-level vision system, implemented as a production system. SPAM is a mature research system with a typical run requiring between 50.000 to 400,000 production firings and an execution time of tbe order of 10 to 100 cpu hours. We report very encouraging speed-ups from task-level parallelism in SPAM - our parallel implementation shows near linear speed-ups of over 12 fold using 14 processors and points the way to substantial (SO-100 fold) speed-ups from task-level parallelism. We present a characterization of task-level parallelism in production systems and describe our methodology for selecting and applying a particular approach to parallel&e SPAM. Additionally, we report the speed-ups obtained from the use of shared virtual memory (network shared memory) in this implementation. Overall, task-level parallelism has not received much attention in the literature. Our experience illustrates that it is potentially a very important tool for speeding up large-scale production systems’.
M. Tambe and P. Rosenbloom. 1990. “ A framework for investigating production system formulations with polynomially bounded match.” In National Conference on Artificial Intelligence (AAAI).Abstract
Real time constraints on AI systems require guaranteeing bounds on these systems’ performance. However, in the presence of sources of uncontrolled combinatorics, it is extremely difficult to guarantee such bounds on their performance. In production systems, the .prirnary source of uncontrolled combinatorics is the production match. To eliminate these combinatorics, the unique-attribute formulation was introduced in (Tambe and Rosenbloom, 1989). which achieved a linear bound on the production match. This formulation leads to several questions: is this unique-attributes formulation the best conceivable production system formulation? In fact, are there other alternative production system formulations? If there are other formulations, how should these alternatives be compared with the unique-attribute formulation? This paper attempts to address these questions in the context of Soar. It identifies independent dimensions along which alternative production system formulations can be specified. These dimensions are based on the fiied class of match algorithms currently employed in production systems. These dimensions create a framework for systematically generating alternative formulations. Using this framework we show that the unique-attribute formulation is the best one within the dimensions investigated. However, if a new class of match algorithms is admitted, by relaxing certain constraints, other competitor fonnulations emerge. The paper indicates which competitor formulations are promising and why. Although some of the concepts, such as unique-attributes, are introduced in the context of Soar, they should also be relevant to other rule-based systems.
1990. “ The problem of expensive chunks and its solution by restricting expressiveness.” Machine Learning Journal, 5, 3, Pp. 299-348.Abstract
Soar is an architecture for a system that is intended to be capable of general intelligence. Chunking, a simpleexperience-based learning mechanism, is Soar’s only learning mechanism. Chunking creates new items ofinformation, called chunks, based on the results of problem-solving and stores them in the knowledge base. Thesechunks are accessed and used in appropriate later situations to avoid the problem-solving required to determinethem. It is already well-established that chunking improves performance in Soar when viewed in terms of thesubproblems required and the number of steps within a subproblem. However, despite the reduction in number ofsteps, sometimes there may be a severe degradation in the total run time. This problem arises due toexpensivechunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge base. They pose amajor problem for Soar, since in their presence, no guarantees can be given about Soar’s performance.In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose asolution for expensive chunks. The solution is based on the notion of restricting the expressiveness of therepresentational language to guarantee that the chunks formed will require only a limited amount of accessing effort.We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support ouranalysis.